
Page 1 of 40

J I

Go Back

Full Screen

Close

Quit

A tactic language for reasoning about Z
specifications
/Reference manual

This section of the CADiZ manual is derived from a paper published at the
Northern Formal Methods workshop in 1998.

ABSTRACT The syntax and semantics of a particular tactic language are defined.
The language uses lazy evaluation to manage backtracking in the search space.
It also uses pattern matching to associate names with formulae that will sub-
sequently be passed as arguments to an inference rule. The result of the infer-
ence rule is accompanied by a revision of the association, so that corresponding
formulae in the result may be passed as arguments to the next inference rule.
The combination of this revision with lazy evaluation raises some problems for
efficient implementation.

1. Introduction

This paper is about a tactic language for the CADiZ theorem prover[?]. CADiZ
aims to provide direct support for Z notation[?] and to conform to the forthcom-
ing Z standard[?]. Our involvement in the standardization panel has given us
some confidence about what will be in the standard[?]. CADiZ performs syntax
checking, type checking, prettyprinting, browsing, and increasingly formal reas-
oning including proof of conjectures. The Z specification appears on the screen

Page 2 of 40

J I

Go Back

Full Screen

Close

Quit

in traditional mathematical notation. Well-formed formulae can be selected with
the mouse. A menu of commands applicable to the selected formulae can be
requested[?]. Reasoning is performed by a large number of elementary inference
rules. A version of CADiZ is freely available[?].

Finding a proof amounts to finding an appropriate composition of inference rules.
The entire search space is so large that this cannot in general be done automat-
ically. Users are able to find proofs by following particular heuristic strategies,
realising for example which lemmas are relevant and where those lemmas can be
used. The aim of a tactic language is to be able to express such a strategy, so
that the user has merely to choose a particular tactic and then the machine can
automate its application.

In many theorem provers, the language in which tactics are written is just the
language in which the theorem prover itself was constructed, for example Com-
mon Lisp is used in Zola[?] and ML is used in ProofPower[?]. CADiZ is written in
C, and so this approach would not be appropriate: we want to be certain that the
only way a tactic can build a proof is by the application of elementary inference
rules, and in C it would be difficult to ensure this restriction. In other theorem
provers, it has been found that functional languages provide a particularly ap-
propriate basis for writing tactics. Indeed, the language ML, which has a large
functional subset, evolved as the tactic language of a theorem prover[?]. More
recent functional languages assume lazy evaluation[?]. The failure as an empty
list of successes paradigm[?] exploits lazy evaluation: a tactic is written to search
for a list of successful proofs, and lazy evaluation ensures that no more than the
first is computed[?]. The backtracking that is needed in any search procedure
thus happens implicitly, rather than having to be coded explicitly.

Page 3 of 40

J I

Go Back

Full Screen

Close

Quit

Having decided to reuse a lazy functional notation, we then had the choice of
either reusing an existing implementation of a functional language, interfaced
somehow to the inference rules within CADiZ, or building an interpreter for a
functional notation within the toolset. Our inference rules use an unconventional
approach to the variable capture issue, which would make the exchange of goals
with another tool difficult[?]. That, combined with the potential to exploit other
aspects of CADiZ, led to the construction of a tactic interpreter within the toolset.
Similar choices have been made for other theorem provers, for example Mural[?].

The next section introduces some inference rules, showing how they are invoked
interactively and via the tactic language. Section ?? presents an example tactic,
to give a flavour of the notation. The syntax and semantics of the tactic language
are then defined in subsequent sections. A further example follows, and discussion
of some specific issues completes the paper.

2. Inference rules

2.1. Interactive application of rules

CADiZ’s inference rules may be categorised as single argument in situ replace-
ments, multiple argument rearrangements, and rules having textual arguments.
Examples are given in the following paragraphs.

The following in situ replacements, in which p stands for an arbitrary predicate,
are called absorptions .

Page 4 of 40

J I

Go Back

Full Screen

Close

Quit

true ∧ p =⇒ p
p ∨ false =⇒ p

Interactively, a user can select one or more absorbable formulae in a goal by
pointing and clicking, and then the absorption command can be chosen from a
menu of applicable commands.

Antecedent equalities between expressions, and antecedent equivalences between

Page 5 of 40

J I

Go Back

Full Screen

Close

Quit

predicates, can be used as a basis for rewriting other expressions and predicates
respectively.

| e1 = e2 `? ...e1... =⇒ | e1 = e2 `? ...e2...
| p1 ⇔ p2 `? ...p1... =⇒ | p1 ⇔ p2 `? ...p2...

Interactively, a user selects one or more instances of expression e1 to be rewritten
and lastly selects the equality e1 = e2, then chooses the Leibniz command from
the menu. Similarly for the predicate case.

A universal or existential quantification predicate can be instantiated with specific
values for its quantified variables.

Page 6 of 40

J I

Go Back

Full Screen

Close

Quit

∀ i : e; ... | p1 • p2 =⇒ (∀ i : e; ... | p1 • p2) ∧ (∀ i : e; ... | i = e1 ∧ ... ∧ p1 • p2)
∃ i : e; ... | p1 • p2 =⇒ (∃ i : e; ... | p1 • p2) ∨ (∃ i : e; ... | i = e1 ∧ ... ∧ p1 • p2)

Interactively, a user selects the quantified predicate then chooses the quantification tac
command from the menu, then supplies the values for the quantified variables as
text in response to prompts from the tool. Alternatively, existing formulae whose
text would be suitable may be selected first, before the quantified predicate, in-
stead of entering into the dialogue with the tool. The text supplied is typechecked
in the environment of the quantified predicate. The treatment of formulae as text
is necessary because the scopes of the declarations to which their names are bound
might not extend to the quantified predicate.

Page 7 of 40

J I

Go Back

Full Screen

Close

Quit

2.2. Tactics that apply rules

The CADiZ tactic language can apply the same inference rules as can be applied
interactively. The syntax for applying an inference rule in the tactic language
is to juxtapose the command name, written as a string literal (because some
of the command names have spaces in them), with arguments appropriate for
that command. Arguments that are formulae within a goal can be selected by
numbers. A formula has number n if it is the n + 1’th formula to be visited in
a pre-order traversal of the abstract syntax tree. So the whole goal is number 0,
and a formula has a lower number than another if it starts sooner on the page, or
if they start at the same place then if it finishes later. This use of numbers suffices
for recording scripts of proofs, but is inappropriate in general for tactics. This
inadequacy is addressed by pattern matching facilities, as discussed in section
??. Assume for the moment that p denotes a predicate, and e, e1, e2 denote
expressions. Arguments that the particular inference rule interprets as text can
alternatively be written as string literals, or can be omitted, in which case a
dialogue with the user occurs during execution of the tactic. So the examples
discussed earlier could be expressed in the tactic language as follows.

”absorption” e p
”Leibniz” e1 e2 p
”quantification tac” ”text” p
”quantification tac” p

Note the overloading of quantification tac, which is resolved dynamically by in-
spection of the arguments to which the command is applied.

Page 8 of 40

J I

Go Back

Full Screen

Close

Quit

An application of an inference rule either produces a single success, or, if the rule
is not applicable, fails, producing an empty list of successes. For an inference rule
to be applicable, the formula and text arguments to which it is applied must be
appropriate. Moreover, the rule must be applied to a single goal (as explained in
section ??, tactics are applied to lists of goals).

The syntax for applying a tactic is similar to that for applying a rule. The name
of the tactic is given as a text argument to the apply tactic command, along
with any other arguments appropriate to that tactic. Like quantification tac, if
insufficient arguments are given, it is the earlier arguments that are presumed
to be missing, and values for them are prompted for using dialogue boxes. An
apply tactic command differs from an elementary rule in being able to return
more than one success.

The application of a unary rule or unary tactic to multiple arguments (such as
the absorption above) is equivalent to the sequential composition (section ??) of
that rule or tactic to individual arguments. An application to an argument that
starts later is done before an application to an argument that starts earlier, so
that the in situ replacements do not interfere with one another.

3. An example tactic

The following flatten tactic carries out all those elimination steps that generate
only one sub-goal and are applicable. Subsequent sections define the notation;
this example appears here to give a flavour of the notation that is to be defined.

Page 9 of 40

J I

Go Back

Full Screen

Close

Quit

The flatten tactic takes a single parameter g , which is required to be a whole
goal. It is a recursive tactic: each reference to t has the effect of applying the
whole tactic again. The ! notation says that there is no need to consider any
success that this tactic might find beyond the first one found. There is then an
alternation of four tactics, separated by | symbols.

TACTIC flatten goal g |
rec t •

!(“axiom” g
| (patgoal pred p | `? p •

match p
:: | ¬ pred •
| pred ∨ pred •
| ∀ stxt • pred • “elimination” p

:: .; t)
| (patgoal pred p | | p `? •

match p
:: | ¬ pred •
| pred ∧ pred •
| ∃ stxt • pred • “elimination” p

:: . ; t)
| skip)

The first alternative succeeds only if the goal g is an axiom. The second al-
ternative associates the new name p with a consequent in the goal, and matches

Page 10 of 40

J I

Go Back

Full Screen

Close

Quit

that consequent against three patterns: a negation, a disjunction, and a univer-
sal quantification. If it is any of those, the elimination command is applied (it
will succeed), and then the tactic is applied recursively. If it is none of those, the
next consequent is considered similarly. If still no match is found, this alternative
fails, and the next is considered. The third alternative is similar to the second,
but considers antecedents instead of consequents. The fourth alternative, skip,
always succeeds: it ensures that the whole flatten tactic always succeeds, even if
it could not find anything to flatten.

4. Tactic combinators

Any review of tactic languages reveals essentially the same combinators in each:
sequential composition, parallel composition, alternation, skip, fail and recur-
sion. Those combinators alone suffice as the user-accessible primitives of a tactic
language. For precision, the semantics of the combinators will be defined form-
ally. First, some data types and auxiliary functions are needed. These additional
definitions are not part of the tactic language accessible to the user. The metalan-
guages used in these definitions are the ISO standard syntactic metalanguage, and
a Haskell-like functional notation.

Page 11 of 40

J I

Go Back

Full Screen

Close

Quit

4.1. Data types

There is no notation for defining new data types in the tactic language. The
only data types are ones corresponding to Z phrases, such as goals, and tactics
themselves.

4.1.0.1. Goals A goal is a phrase conforming to the Goal syntax. A goal is
a theorem if the conjunction of the antecedents implies the disjunction of the
consequents.

Goal = GOAL, [[,Formals ,]],Declarations , [|,Predicates],`? ,Predicates ,END ;

The GOAL token serves to distinguish goals from other Z paragraphs. The op-
tional Formals are any generic parameters of the goal. The antecedent and
consequent predicates may refer to the global names of the specification, the gen-
eric parameters, and the local declarations of the goal. The generic parameters,
declarations and predicates are written in the notation of draft Standard Z. The
Goal syntax subsumes the Conjecture syntax of draft Standard Z.

A type Goal is assumed to have been defined to represent phrases of the Goal
syntax.

4.1.0.2. Successes A success is a list of goals arising from application of an
inference rule.

type Success = [Goal]

Page 12 of 40

J I

Go Back

Full Screen

Close

Quit

The following type declaration formally characterizes an inference rule.

rule :: Goal → Success

Here, rule corresponds to the partial application of a command to all of the
arguments it needs up to but excluding the goal.

4.1.0.3. Tactics A tactic is formed from a composition of inference rules.

type Tactic = Success → [Success]

A tactic is applied to either a singleton list containing a user-nominated goal or
a success produced by an earlier tactic, and returns a list of all the successes that
it can compute. Each success arises from the application of a single rule, perhaps
via another tactic.

An application of a tactic that returns an empty list of successes is said to have
failed. An application of a tactic that returns a success containing zero goals has
succeeded in proving that the goal is a theorem.

Each tactic application is evaluated lazily, so that no more of its successes are
computed than necessary for the initial tactic application by the user to produce
a success.

Page 13 of 40

J I

Go Back

Full Screen

Close

Quit

4.2. Auxiliary functions

The functions ++, concat , map and foldr , all of which are well-known to func-
tional programmers, are used in the definition of the tactic combinators. (++
appends two lists; concat concatenates a list of lists; map applies a function
to each element in a list, forming a list of the results; and foldr combines the
elements of a list using a binary function.)

A function, cp, to compute the Cartesian product of a list of lists of successes, is
also needed.

cp :: [[Success]]→ [Success]
cp = foldr (cp2) []

where xs cp2 ys = [x ++ y | x ← xs , y ← ys]

Also needed is a function, bust , to curtail a list of successes to contain no more
than the first success.

bust :: [Success]→ [Success]
bust [] = []
bust (s : ss) = [s]

4.3. Combinators

4.3.0.4. Sequential composition Sequential composition combines two tac-
tics so that, when the combination is applied to a success, the first tactic is
applied to the success producing successes to which the second tactic is applied.

Page 14 of 40

J I

Go Back

Full Screen

Close

Quit

(t1; t2) s = concat (map t2 (t1 s))

Since the application of the first tactic produces a list of successes, the second
tactic must be mapped over that list, and the resulting lists of successes are
concatenated. Tactic t1 must be able to cope with the number of goals in success
s , and tactic t2 must be able to cope with the number of goals in each success
produced by the application of t1, otherwise the application fails.

4.3.0.5. Parallel composition Parallel composition combines n tactics so that,
when the combination is applied to a success comprising n goals, each tactic is
applied to the corresponding goal in order.

(t1 || ... || tn) [g1, ..., gn] = cp [t1 [g1], ..., tn [gn]]

The Cartesian product computes all possible combinations of successes. If any
tactic application fails, the Cartesian product is empty, and so the whole parallel
composition fails. If the number of goals differs from the number of tactics, the
application fails.

4.3.0.6. Script composition Script composition differs from parallel compos-
ition only in the cases where it fails, when it guarantees to reduce all of the n
applications of tactics to singleton goals.

(t1!!...!!tn) [g1, ..., gn] = cp [t1 [g1], ..., tn [gn]]

Script composition is intended for use in recorded scripts, so that an obsolete
script will replay as much as possible.

Page 15 of 40

J I

Go Back

Full Screen

Close

Quit

4.3.0.7. N-ary composition N-ary composition is analogous to parallel com-
position, but applying the same tactic to each of the given goals.

map t [g1, ..., gn] = cp [t [g1], ..., t [gn]]

The Cartesian product computes all possible combinations of successes, so if any
tactic application fails, the whole n-ary composition fails. (The overloading of the
name map to denote both an auxiliary function and a form of tactic is unfortunate
for this discussion, but the user of the tactic language sees only the latter.)

4.3.0.8. Alternation Alternation combines two tactics so that, when the com-
bination is applied to a success, the successes from applying the first tactic are
appended with the successes from applying the second tactic.

(t1 | t2) s = (t1 s) ++ (t2 s)

In a tactic such as (ta | tb); tc, if tc cannot succeed given any of the successes pro-
duced by ta , then the successes produced by tb will be computed and considered.
The backtracking that one expects from an alternation is provided implicitly by
the lazy evaluation mechanism.

4.3.0.9. Curtailment Curtailment arranges for a tactic to compute no more
than a single success.

! t s = bust (t s)

If no successes are computed, then the whole curtailment fails similarly, other-

Page 16 of 40

J I

Go Back

Full Screen

Close

Quit

wise the result contains just the first success. Continuing the above example
(ta | tb); tc, if tc can succeed from successes produced by ta , then the deferred
application of tb might never be needed. The space cost of its representation can
be reclaimed by curtailing the alternation: !(ta | tb); tc. In essence, one does not
say how to search, but one may wish to say where not to search.

4.3.0.10. Skip Skip always succeeds without doing anything.

skip s = [s]

The given success is the sole success returned. Skip provides a way of saying
don’t do any more.

4.3.0.11. Fail Fail always produces an empty list of successes.

fail s = []

Fail provides a way of saying that the search has gone down a route that is now
known to be unwanted.

4.3.0.12. Recursion Recursion allows a tactic to apply itself repeatedly.

(rec j • t) s = t [(rec j • t)/j] s

Any reference to j within t is replaced by the whole tactic rec j • t . The apparent
infiniteness can be avoided in the implementation either by creating a circular
structure or by copying lazily.

Page 17 of 40

J I

Go Back

Full Screen

Close

Quit

5. Tactic definitions

A tactic definition introduces a named tactic. It associates names, called jokers,
with the argument values to which the tactic is applied.

5.1. Syntax

In this syntax, the following are lexical tokens: TACTIC , expr , pred , decl ,
goal , exprs , decls , stxt , name, names , type, decn. Their LaTeX mark-up and
troff mark-up are defined in the reference manual. These need not be reserved
keywords of the Z notation, as they are used in distinct contexts. (CADiZ’s lexer
uses a separate table of keywords for the tactic language.)

NamedTacticDef = TACTIC ,NAME ,TacticDef ;

TacticDef = TypedJoker , {; ,TypedJoker}, |,Tactic;

Page 18 of 40

J I

Go Back

Full Screen

Close

Quit

TypedJoker = expr ,NAME , {, ,NAME}
| pred ,NAME , {, ,NAME}
| decl ,NAME , {, ,NAME}
| goal ,NAME , {, ,NAME}
| exprs ,NAME , {, ,NAME}
| decls ,NAME , {, ,NAME}
| stxt ,NAME , {, ,NAME}
| name,NAME , {, ,NAME}
| names ,NAME , {, ,NAME}
| type,NAME , {, ,NAME}
| decn,NAME , {, ,NAME}
;

The Tactic syntax includes all the tactic combinators discussed above, and some
other notations discussed below. NamedTacticDef s can be written in Z specific-
ation documents. A TacticDef can also be written in a separate file, where the
name of the file serves as the name of the tactic.

5.2. Jokers

Each joker is declared to be of a type corresponding to a particular syntactic
category of the Z notation. A tactic is applicable to some arguments only if those
arguments are Z formulae of types corresponding to the types of the declared
jokers. The correspondence between joker types and Z notations[?] is as follows.

Page 19 of 40

J I

Go Back

Full Screen

Close

Quit

expr Expression
pred Predicate
decl Declaration or binding
goal Goal

exprs ExpressionList
decls DeclPart or binding list
stxt SchemaText

name DeclName or RefName
names list of names in schema hiding

type Type
decn Name of declaration

5.3. A small example

TACTIC expandabsorb pred p | “expansion” p; “absorption” p

This example defines a tactic named expandabsorb that is applicable to a predic-
ate p. It tries to apply the inference rules expansion and absorption in sequential
composition to that predicate. Assuming that the expansion command is applic-
able to this particular predicate, the inference rule will be applied, and joker p
will be rebound to the result of that inference. So the predicate that is given to
the absorption command is the result of the expansion command, not the original
predicate. This is not referentially transparent, though by twisting the meaning
of reference, an approximation to the same can be had: the two references to p

Page 20 of 40

J I

Go Back

Full Screen

Close

Quit

refer to the formula at a particular position within the goal to which each in-
ference rule or tactic is implicitly applied. Unfortunately, the description of the
position isn’t a constant either.

This problem of rebinding jokers whenever an inference rule is applied is particu-
larly awkward to implement in combination with the lazy evaluation mechanism.
An implementation is outlined in section ??, after more of the tactic language
has been presented.

6. Pattern matching

Many forms of pattern matching tactic are provided. Each must be applied to a
success containing exactly one goal. Each takes a formula in that goal selected
by an existing joker and matches it against one or more patterns. The patterns
are written in the Z notation, extended to permit references to jokers. If a
pattern matches, the jokers referred to by the pattern are bound to corresponding
formulae within the selected formula, and a further tactic is then applied in the
context of these additional jokers. Alternatively, if no pattern matches, the whole
pattern match tactic fails. Jokers of type goal are not used in this context, as a
goal is never part of a larger formula.

Page 21 of 40

J I

Go Back

Full Screen

Close

Quit

6.1. Syntax of patterns

Patterns are written using the Z notation itself, extended to allow use of jokers of
corresponding types. In this syntax, the following are lexical tokens: as , expr ,
pred , decl , exprs , decls , stxt , name, names , type. Their LaTeX mark-

up and troff mark-up are defined in the reference manual. They are reserved
keywords of the Z notation.

Expression = ExprJoker
| (,ExprJoker ,)
| ExprJoker , as ,Expression
| expr
| DecnJoker
| all Expression productions of the standard syntax
;

ExpressionList = ExprsJoker
| ExprsJoker , as ,ExpressionList
| exprs
| all ExpressionList productions of the standard syntax
;

Page 22 of 40

J I

Go Back

Full Screen

Close

Quit

Predicate = PredJoker
| (,PredJoker ,)
| PredJoker , as ,Predicate
| pred
| all Predicate productions of the standard syntax
;

SchemaText = StxtJoker
| (, StxtJoker ,)
| StxtJoker , as , SchemaText
| stxt
| all SchemaText productions of the standard syntax
;

DeclPart = DeclsJoker
| (,DeclsJoker ,)
| DeclsJoker , as ,DeclPart
| decls
| all DeclPart productions of the standard syntax
;

Declaration = DeclJoker
| (,DeclJoker ,)
| DeclJoker , as ,Declaration
| decl
| all Declaration productions of the standard syntax
;

Page 23 of 40

J I

Go Back

Full Screen

Close

Quit

DeclName = NameJoker
| NameJoker , as ,DeclName
| name
| all DeclName productions of the standard syntax
;

RefName = NameJoker
| NameJoker , as ,RefName
| name
| all RefName productions of the standard syntax
;

NameList = NamesJoker
| (,NamesJoker ,)
| NamesJoker , as ,NameList
| names
| all NameList productions of the standard syntax
;

Type = TypeJoker
| type
| all Type productions of the standard syntax
;

In the above syntax rules, parentheses around a joker request strong matching,
as discussed below in section ??. The as notation allows a joker to be associated
with a formula as well as further jokers being associated with its components.
The terminal symbols beginning with are wildcard patterns that always match;

Page 24 of 40

J I

Go Back

Full Screen

Close

Quit

they avoid having to introduce a named joker for a part of a formula that will not
be referred to. For example, if p1 and p2 are predicate jokers, then the pattern
p1as pred ∧ p2 matches any conjunction predicate, binding p1 to the entire
conjunction and p2 to the right conjunct.

The DecnJoker notation for an expression is explained below in the section on
local definitions.

6.2. Matching expressions

An expression match tactic matches an expression within the current goal against
one or more patterns. Patterns are preceded by declaration of new jokers, all of
which must be bound by the pattern, and followed by a tactic to apply if the
pattern matches. Here is an example.

match e
:: expr s | P s • t1

:: expr f , a | f a • t2

:: name n; exprs es | n[es] • t3

:: | e • t4

:: .

Each case is introduced by the :: token. (The overloading in this paper of the ::
symbol with the traditional functional notation for type declaration is unfortu-

Page 25 of 40

J I

Go Back

Full Screen

Close

Quit

nate.) The pattern starts after the | token and ends at the first • that cannot be
recognised by the Z parser.

In the example, joker e is already bound to an expression. Because this is an ex-
pression joker, the patterns are parsed according to the Expression syntax. The
patterns of the cases are matched in order from top to bottom, and the highest
case with a matching pattern is chosen. The first case matches any powerset ex-
pression, binding joker s to the argument in the powerset expression. The second
case matches any function application expression, binding joker f to the function
and joker a to its argument. Applications of function operators are transformed
within CADiZ to this juxtaposition notation, allowing tactics to match function
operator applications without being expressed in terms of particular function op-
erators. (Z function operator applications are not curried, so an application to
several arguments is actually an application to a single tuple.) The third case
matches any generic instantiation expression, binding joker n to the name of the
generic and joker es to the list of instantiating expressions. Instantiations of gen-
eric operators are transformed within CADiZ to this square-bracketed notation,
allowing tactics to match generic operator instantiations without being expressed
in terms of particular generic operators. The fourth case is guaranteed to match—
it is like a default. This is achieved by instantiating the pattern according to the
existing binding of the joker before matching the pattern. Tactic t4 is often skip,
ensuring that the default behaviour of the match tactic is to do nothing. This
match tactic will nevertheless fail if one of the earlier patterns matches, but the
tactic in the matched case fails. This is because backtracking does not consider
later cases in a match. (Perhaps it should; it can nevertheless be achieved by
composing multiple matches having cases in different orders in alternation with

Page 26 of 40

J I

Go Back

Full Screen

Close

Quit

each other.)

6.3. Matching predicates

A predicate match tactic matches a predicate within the current goal against one
or more patterns. It behaves in a similar way to an expression match tactic.

match p
:: pred p | ¬ p • t1

:: pred q , r | q ∧ r • t2

:: expr s | expr ∈ s • t3

:: | p • t4

:: .

In the example, joker p is already bound to a predicate. Because this is a pre-
dicate joker, the patterns are parsed according to the Predicate syntax. The first
case matches any logical negation predicate, binding joker p to the argument of
the negation. The second case matches any logical conjunction predicate, bind-
ing joker q to the left conjunct and joker r to the right conjunct. The third case
matches any relation predicate, binding joker s to the relation. Applications of
relation operators are transformed within CADiZ to membership predicates, al-
lowing tactics to match relation operator applications without being expressed in
terms of particular relation operators. It uses a wildcard to match any expression
without binding a joker. The fourth case is a default case.

Page 27 of 40

J I

Go Back

Full Screen

Close

Quit

6.4. Matching other Z notation

Having seen examples of matching expressions and predicates, it suffices to say
that expression lists, declaration lists, schema texts, declarations, name lists and
types can all be matched similarly using the match notation: matching a joker of
one of those types causes the patterns to be parsed according to the corresponding
Z syntax. Matching at the goal level requires some additional tactic notation, as
described next.

6.5. Matching antecedents

An antecedent pattern tactic binds a joker to the nth antecedent predicate.

patante pred p | 2 • t

In the example, joker p is bound to the second antecedent of the current goal. If
the current goal has an insufficient number of antecedents, the tactic fails.

6.6. Matching consequents

A consequent pattern tactic binds a joker to the nth consequent predicate.

patcons pred p | 1 • t

In the example, joker p is bound to the first consequent of the current goal. If
the current goal has an insufficient number of consequents, the tactic fails.

Page 28 of 40

J I

Go Back

Full Screen

Close

Quit

Those proof steps that introduce new antecedents or consequents make these
predicates be first in the lists, hence the number 1 is generally used in these
tactics.

6.7. Matching goals

A goal pattern tactic matches the whole goal against a pattern.

patgoal pred p, q | | p `? q • t

In this example, the pattern (| p `? q) refers to two jokers. There could be
additional declarations, antecedents and consequents in the goal beyond those
listed in the pattern: the pattern is matched in all possible ways, and the resulting
lists of successes are concatenated.

6.8. Strong versus weak matching

In all of the example patterns given above, the pattern refers only to new jokers
that are to be bound to Z phrases. Patterns can also refer to jokers that were
bound by earlier pattern matching and are still in the environment. Such pat-
terns are instantiated, replacing those jokers with the Z phrases to which they
are bound, before pattern matching proceeds as described above. These instanti-
ation phrases can match either any identical Z phrase (so-called weak matching),
or only the very same instance of the Z phrase to which the joker was bound
(strong matching). The default behaviour is weak matching. Strong matching

Page 29 of 40

J I

Go Back

Full Screen

Close

Quit

is requested by enclosing the use of the joker in the pattern immediately within
parentheses.

For example, if p is a predicate joker in the environment, then the following case
of a match tactic

:: pred q | (p)⇔ q • ...

would match only those equivalences whose left operand is the particular instance
of the predicate to which p is bound, whereas if the parentheses were omitted,
then the pattern would match any equivalence whose left operand is a predicate
that is identical to that bound to p.

The strong matching parentheses can be used with expr , pred , stxt , decl , decls
and names jokers. They cannot be used with goal or type jokers, as there is no
need. They cannot be used with name jokers, because of syntactic ambiguities.
(Parentheses have the advantage of not reserving any words from use in Z.) They
cannot be used with exprs jokers because no attempt to implement those has yet
been made.

6.9. Default notation

The Z notation provides defaults for parts of some Z phrases. This allows the au-
thor to omit those parts; they are filled in by the CADiZ parser and typechecker,
allowing them to be manipulated during proofs, and are elided again if still ap-
propriate during prettyprinting. The default notations are: the | part of a schema
text, which defaults to | true; the • part of comprehensions, which defaults to

Page 30 of 40

J I

Go Back

Full Screen

Close

Quit

• characteristic tuple; and the instantiation list of a generic instantiation ex-
pression, which defaults to the carrier sets of the inferred types of the generic
arguments. Patterns are themselves Z phrases and so can omit parts for which
there are defaults. On the other hand, a pattern will still match if some of the
defaults are written explicitly.

Parentheses cannot be matched explicitly: any parentheses serve to either over-
ride operator precedences or indicate strong matching.

7. A further example

The following tactic, blowDecl , simplifies a declaration, with the aid of an auxil-
iary blowExpr for simplifying expressions.

Page 31 of 40

J I

Go Back

Full Screen

Close

Quit

TACTIC blowDecl decl d |
match d

:: expr e | name : e •
“apply tactic” e “blowExpr”;
match e
:: | { stxt • expr} •
| { exprs} • “normalization” d

:: | e • skip
:: .

:: expr e
| name == e •
| e •

“apply tactic” e “blowExpr”
:: .

The outermost match’s three patterns match : declarations, == declarations, and
schema inclusion declarations respectively. All three involve an expression that
is simplified first. The : case then checks to see if its expression has simplified to
a set comprehension or a set extension. If it has, the declaration is normalized,
generating a membership predicate that can be simplified later. Tactic blowExpr
is not shown here, but it is interesting to note that it is mutually recursive
with blowDecl via blowStxt and blowDecls , which together with blowPred and
blowExprs serve to simplify core Z notation without unfolding explicitly defined
notation. As an example, if blowDecl were applied to this declaration,

Page 32 of 40

J I

Go Back

Full Screen

Close

Quit

i : {x : A | false • x}

the set comprehension would simplify to an empty set, and the declaration would
be normalized, resulting in the following.

i : PA | i ∈ {}

8. Other considerations

8.1. Local definitions

The let notation is provided for introducing and binding jokers to things that
are not expressible using the pattern matching notation discussed above. The
following example illustrates the various forms of local definition that can appear
within let notation.

Page 33 of 40

J I

Go Back

Full Screen

Close

Quit

let pred p1 == antecedent 1,
pred p2 == consequent 2,
expr e == parse expr “2 + 2”,
exprs es == parse exprs “2, 3”,
pred p3 == parse pred “2 ≤ 3”,
decl d == parse decl “x : {1, 2, 3}”,
decls ds1 == parse decls “x == 3; y , z : {1, 2, 3}”,
name n == parse name “x”,
stxt s == parse stxt “y : Z | y > 1”,
decls ds2 == declsbefore d ,
decls ds3 == declsafter d
type t == typeof e
decl d == declof e
decn d2 == decnof d1
• t

antecedent binds a pred joker to the nth antecedent. It differs subtly from
patante , in that the joker is bound “by name” rather than “by value”—more
is said about this in section ??. Also, n can be negative, referencing the nth
antecedent back from the end. Similarly, consequent differs subtly from patcons .
parse expr , parse exprs , parse pred , parse decl , parse decls , parse name, and
parse stxt all bind a joker of corresponding type to a new formula, distinct from
the current goal, by parsing a string literal. declsbefore binds a joker to a list of
those declarations that precede a given declaration. (That list cannot be found
by pattern matching because of the asymmetric representation used for lists.)

Page 34 of 40

J I

Go Back

Full Screen

Close

Quit

declsafter is provided for symmetry (even though the list of declarations it finds
might be found by pattern matching). typeof binds a type joker to the type of
the expression referred to by an expr joker. declof binds a decl joker to the
declaration referred to by the reference expression referred to by an expr joker.
decnof binds a decn joker to the given declaration, so that when subsequently
used as an expression it is instantiated to a reference expression bound to that
declaration.

8.2. Concatenations

A further notation for building new formulae is concatenation, denoted by e1 +
+e2, where e1 and e2 are each either a string literal, a reference to a joker, the
numeric address of a formula, or a nested ++ concatenation. Each part of the
concatenation is converted to a string before the concatenation is performed. Such
concatenations are written as arguments to inference rules that expect strings as
arguments.

8.3. String jokers

In addition to the types pred , expr etc of jokers corresponding to formulae, there
is a further type of joker called string . A string joker can be referred to whereever
a string literal could be written. For example, this allows tactics to be written
that are parametrised by the name of an inference rule or tactic to be applied,
giving the tactic language some higher-order capability, allowing general purpose

Page 35 of 40

J I

Go Back

Full Screen

Close

Quit

traversal tactics to be written.

8.4. Maintaining joker bindings

Jokers are of particular types and should each be bound to a formula of that
type. These formulae arise either from pattern matching against the current goal
or from parsing strings. The meaning of a string depends on the environment in
which it is parsed. Rather than parse strings at the time the let tactic is applied
(when the environment could be only that of the whole goal), strings are instead
parsed whenever the joker that is to be bound to the result is referenced. If that
reference is as an argument to an inference rule, the environment is determined
by that inference rule. If that reference is within a pattern, the environment is
determined by that of the formula being matched against. The term “whenever”
is used above to indicate call-by-name rather than call-by-need: the string is
re-parsed for every reference to the corresponding joker. The same call-by-name
treatment is used for all local definitions, not just the parsing of strings.

Jokers that are bound to formulae in goals have to be rebound to corresponding
formulae in sub-goals on each inference. The present mechanism for maintaining
joker bindings involves associating an environment of joker bindings with each
goal. Before matching a pattern, any references to already bound jokers in the
pattern are first instantiated according to the bindings of those jokers in the
environment of the current goal. The pattern is then matched, and the bindings
of new jokers created are added to the environment of the current goal.

Once the arguments to an inference rule have been obtained and found to be

Page 36 of 40

J I

Go Back

Full Screen

Close

Quit

satisfactory, the bindings in the environment associated with the current goal are
distributed onto the abstract syntax nodes of the current goal. The inference
rule is then applied, generating sub-goals with references to reused parts of the
original goal. Where a formula has been replaced in situ, the replacement formula
is given the same jokers as the original had. Each subgoal is then copied in its
entirety (an aspect of CADiZ that is superficially difficult to justify), inheriting the
jokers bound to each of the subgoal’s nodes. An environment is then associated
with each subgoal by appending the bindings from each node, ignoring all but
the first binding found for each joker (there could be several if the inference rule
duplicated a formula).

By this mechanism, only those jokers that are bound to nodes present in the
subgoal are retained, allowing others to be garbage collected. Bindings of jokers
to text arguments are retained in a separate second environment associated with
each goal. Jokers are explicitly unbound when they go out of scope, though lazy
evaluation can cause this to be delayed.

8.5. Interactive selections

Whilst there are jokers for (almost) all syntactic categories of Z notation, not
all syntactic categories can be selected interactively. Consider a schema text
comprising a single name. That name is parsed as an Expression, that Expression
as a schema inclusion Declaration, that Declaration as a singleton DeclPart ,
and that DeclPart as a SchemaText . All five of these occupy the same area on
the screen. Although feedback can be given about which is currently selected,

Page 37 of 40

J I

Go Back

Full Screen

Close

Quit

selecting any particular one is tedious. The pain is reduced by not allowing
names or DeclParts (or ExpressionLists) to be selected interactively. There are
no inference rules for those, and so it is unlikely that a user would want to apply
a tactic to them either. The existence of jokers for those types of notation allows
manipulation of that notation by auxiliary tactics.

Interactive selections are usually contiguous pieces of text. If the text has been
prettyprinted, as CADiZ does, each selection can be approximated by a rectangle.
An exception is declarations of multiple names, for example x , y : N. This is
viewed abstractly as two declarations, x : N and y : N, the former of which does
not appear as contiguous text in the concrete presentation. Since names cannot
be selected, the selection of a declaration is indicated by highlighting just the
name of the declaration, which is conveniently a contiguous rectangular piece of
text sufficient to identify the declaration.

9. Further work

Types of jokers are already provided for most Z syntactic categories. Some lesser
used ones remain to be done, for example renaming lists.

An exprs joker cannot be used with a Cartesian product expression, because of
the latter’s unusual syntax: some special notation will be needed.

Chained relations are similar to default notation (a = b = c =⇒ a = b ∧ b = c),
but different in that the two copies of b must, if generic, be instantiated with the
same arguments. The behaviour of the tactic language with respect to chained

Page 38 of 40

J I

Go Back

Full Screen

Close

Quit

relations has yet to be sorted out properly.

String jokers have provided a means of passing tactics as arguments to other
tactics. It might also be useful to be able to pass patterns as arguments to
tactics.

A more efficient implementation of joker rebinding would be desirable.

10. Conclusions

The inference rules in CADiZ are a little unusual, their number and variety arising
from the ability in the user interface to select any formula. The tactic combinators
are effective and unsurprising. The pattern matching notation, based on the Z
syntax, is quite attractive from the user perspective, so long as the abstract
syntax used by the tool is close to the concrete syntax. However, its effect on
the transformation advantages exhibited by Martin et al for Angel[?] have not
been considered. The novel combination of lazy evaluation with environments
of jokers has been quite successful, but is not entirely satisfactory. The lack of
data type definition facilities is not a problem: Z notation and tactics suffice.
The first-order functional language with specific combinators as primitives was
a good starting point for the tactic language. String jokers suffice to provide
higher-order capability, allowing reusable search strategies to be written.

Page 39 of 40

J I

Go Back

Full Screen

Close

Quit

11. Syntactic metalanguage

The metalanguage used in defining the syntax of tactics is the following subset
of ISO/IEC 14977:1996[?].

Symbol Definition
= defines a non-terminal to be some syntax.
| separates alternatives.
, separates elements to be concatenated.
{ } brackets notation to be repeated zero or more times.
[] brackets optional notation.
′ ′ encloses terminal symbols.
; terminates a definition.

The infix , operator binds more tightly than the infix | operator.

12. Semantic metalanguage

The metalanguage used in defining the semantics of tactics is a functional notation
similar to Haskell[?].

The notation name = type introduces name as a synonym for type. The notation
name :: type declares that the value of name is of the given type. In types, [x]
denotes a list whose elements are of type x , and y → z denotes a function from
elements of type y to elements of type z .

Page 40 of 40

J I

Go Back

Full Screen

Close

Quit

Functions are defined by equations, with patterns on their left-hand sides and
expressions on their right-hand sides. In both patterns and expressions, lists are
either empty [] or non-empty (x : xs), where x is the head element and xs is
the tail of the list. Where a list is of known length, its elements are enumerated
between square brackets, separated by commas, e.g. [a, b, c]. Elision ... is used
where the length of the list is arbitrary.

Acknowledgements

Thanks to Sam Valentine for being the primary user of the tactic language, for
providing examples, and for comments on this paper. The referees made very
useful comments. The need for strong pattern matching was identified by Susan
Stepney.

IT 22-Jan-2002

	Introduction
	Inference rules
	Interactive application of rules
	Tactics that apply rules

	An example tactic
	Tactic combinators
	Data types
	Auxiliary functions
	Combinators

	Tactic definitions
	Syntax
	Jokers
	A small example

	Pattern matching
	Syntax of patterns
	Matching expressions
	Matching predicates
	Matching other Z notation
	Matching antecedents
	Matching consequents
	Matching goals
	Strong versus weak matching
	Default notation

	A further example
	Other considerations
	Local definitions
	Concatenations
	String jokers
	Maintaining joker bindings
	Interactive selections

	Further work
	Conclusions
	Syntactic metalanguage
	Semantic metalanguage

