Proving conjectures using cadiz

/Tutorial guides

This document won’t teach you how to do proofs, but if you already have some
idea on that, then it will tell you how to use cadiz to help find proofs. It assumes
that you know the Z notation. You should already be familiar with interacting
with cadiz, but a short review is given here.
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General observations

2. The terminology of proof

A sequent consists of generic parameters, declarations, antecedent predicates, and
consequent predicates. A sequent expresses the conjecture that the conjunction
of the antecedents implies the disjunction of the consequents.

In the following example, there is one generic parameter (PERSON), three declara-
tions (p and the two relations), three antecedent predicates, and one consequent
predicate.

Topic ::= Z | CADiZ _interface | PROOF
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[PERSON] p : PERSON; _ knows _,_ can_do _: PERSON < Topic
| p knows Z,
p knows CADiZ _interface,
p knows Z N p knows CADiZ interface = p can_do PROOF
F? p can_do PROOF

The syntax of a sequent permits a name to be associated with a sequent. The
symbol separating the antecedents from the consequents (7 ) is called the turn-
stile.

A sequent is proven (i.e. a conjecture is shown to be a theorem) by the application
of proof steps. Each proof step takes as input a sequent (the goal) and generates
as output a collection of zero or more new sequents (the sub-goals). Those goals
that are accepted as theorems without generating any sub-goals are the axioms.
Viewed from the opposite perspective, conjectures, goals, sub-goals, theorems
and axioms are all sequents: a conjecture is a sequent to be proven; a goal is a
sequent that arises in the course of a proof; sub-goals are sequents generated by
the application of a proof step to a goal; a theorem is a proven sequent; and an
axiom is a sequent that is accepted as a theorem without proof.

Proof is an inductive process: a goal has been proven if the application of a proof
step to it generated no sub-goals, or if all of the generated sub-goals have been
proven. Applications of proof steps give rise to a tree structure of sequents: a
proof tree.

Proof steps can be classified as follows. There is a proof step that recognises
a goal as being an axiom. A proof step that replaces a formula within a goal
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by an equivalent formula in the corresponding place within its single sub-goal
is an in situ replacement step. Other elementary proof steps are called proof
rules: each one’s sub-goals have different numbers of declarations, antecedents or
consequents from the original goal, or have more than one sub-goal.

Proofs can be structured using lemmas: instead of working directly towards ax-
ioms, the proof steps can be used to work towards lemmas, which are sequents
that have been or may be proven separately.

An elementary proof step performs only a small quantity of reasoning. A larger
reasoning step can be achieved using a tactic. The application of a tactic causes
the application of a combination of other proof steps. There is nothing that can
be proven by a tactic that could not be proven by a combination of other proof
steps.

A decision procedure is a proof step that replaces a predicate by either true or
false as appropriate. This cannot be done for all predicates, but it is useful to
have decision procedures where possible.

3. Invoking proof steps

The proof steps can be used to attempt to prove a conjecture only if cadiz is run
with the -P option, and only if no errors are found by parsing and typechecking of
the specification. The -P option causes the creation of three windows. A window
on the right-hand side displays the Z specification. A window on the left-hand
side displays output generated during the session, such as sub-goals of proof steps.
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A window at bottom-right displays a proof tree, exhibiting the structure of the
current proof. This proof tree window overlaps the specification window.

Proof steps are invoked by first selecting their arguments, then inspecting those
arguments to see a menu of the names of applicable proof steps, and finally
choosing the desired proof step from the menu.

Any well-formed 7 formula can be selected by pointing the mouse and clicking
button 1. The selected formula is highlighted using inverse video, and its syntactic
category is named in the window’s title bar. If the formula thus selected is a
smaller formula within the desired one, click again within that smaller formula to
select the next larger formula; and repeat as necessary. To select a large formula
in few clicks, click on a part of it that is involved in the fewest sub-formulae.
For example, to select the whole of the predicate 3 schema e expression, click on
either the 4 symbol or the e symbol, as clicking within schema or expression will
select a sub-formula, leaving further clicks needed.

Selected arguments are inspected by holding down mouse button 2. While mouse
button 2 is depressed, a menu appears listing just those commands (such as
proof steps) that are applicable to the selected formulae. A proof step is chosen
by pointing at its name in the menu and releasing button 2.

The majority of proof commands are unary, so require only one selection, but
can be applied to several selections simultaneously. Such commands are offered
only if they are applicable to every one of the selections.

The way to make several selections for a single command is as follows. Make one
selection, then hit the x key. This marks the selection by drawing a cross through
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it, and it ceases to be in inverse video. Repeat for the other selections, but omit
crossing the last one: there has to be an inverse video selection for button 2 to
pop-up the menu. This use of crosses allows all the selections to be perceived,
even if they overlap. The c key erases the most recent cross (useful if a mistake
has been made), and the C key clears all crosses.

Unary commands can be assumed to be applicable to multiple selections unless
the documentation says otherwise. Some proof commands require more than one
operand, and so interpret multiple selections differently—in particular, the order
in which selections are made is significant. The necessary order is documented
for each such command.

4. Using the proof tree

When a proof step is chosen from a middle button menu, the sub-goals it generates
are displayed in the left-hand window, where they are appended to the end of
the displayed document. This does not convey the tree structure of a proof, or
even indicate which goals have yet to be proven. The tree structure of a proof
is displayed in the third window. Non-leaf nodes in the proof tree correspond to
goals to which proof steps have been applied; they are labelled with the names
of those corresponding proof steps. Leaf nodes in the proof tree correspond to
the remaining sub-goals, displayed as boxes, and to lemmas referred to by the
proof, displayed as the names of those lemmas. Each node in the proof tree can
be selected just like a 7 formula. A message in the title bar indicates whether
the corresponding goal has been proven yet. Inspecting and choosing the context
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command causes the corresponding goal to be selected (more precisely, for a non-
leaf node, the formulae within the goal, to which the proof step was applied, are
selected). Equally, inspections of goals offer the node in tree command when
appropriate.

The first attempt at a proof might not succeed. There can be several attempts
to prove a goal active concurrently. The proof tree shows only one attempt, with
ellipses drawn around nodes having alternative proof attempts. When a node with
an allipse is inspected, the other attempts command is offered. This command
pops up a menu naming all the other proof steps that have been applied to the
inspected node’s goal from which any one can be chosen. Proof attempts can
be pruned from the tree when you are sure that an attempt won’t succeed. The
prune command does that, but it doesn’t erase the full texts of the corresponding
goals from the left window; it’s merely for tidying the tree.

New sub-goals that are duplicates of known goals (in this or previous proofs in
this session) are automatically identified with (replaced by) those known goals.
The proof tree may then cease to be a tree but remain a directed acyclic graph,
though we still call it the proof tree; steps that would create cycles are not
permitted. Applying the origin command to a sub-goal in the left window selects
its original parent goal.

As the number of nodes in the proof tree increases, cadiz scales the tree to fit
within the window: the arrows between nodes become shorter, and the text
labelling nodes becomes smaller. If it becomes illegible, the number of nodes in
the displayed tree can be reduced using the [/ command. This raises unproven
leaves and referenced named lemmas to an inspected ancestor node, concealing



1 Contents of this page
2 The terminology . . .

3 Invoking proof steps
4 Using the proof tree
5 Recording and. ..

6 Printing a proof

7 Avoiding variable.. . .
8 The proof steps

8.1 Proof rules

8.2 In situ replacements
8.3 Lemmas

8.4 Decision procedures
8.5 Built-in tactics

8.6 Annotations

9 Tactic language

all intervening nodes. Any other descendents of the inspected node that are
cross-selected are also retained. This is sufficient to cope with most trees, though
the case of a single goal giving rise to dozens of immediate sub-goals remains
problematic.

5. Recording and playing a proof

A script of the steps taken in proving a goal can be saved using the record script
command. This is offered when a node in the proof tree is inspected. It prompts
for a filename for the script. If the goal has a name associated with it, that name
is suggested as a default filename for the script. The record seript command
saves the steps from the inspected node downwards, so is usually used on the
root node. Any steps concealed by lifts are scripted, rather than the lift steps
themselves. Any steps used to prove lemmas used within the recorded proof
are not scripted, as it is assumed that the proofs of the lemmas are recorded
separately. Incomplete proofs can be scripted.

A script can be replayed when a goal or its corresponding node in the proof tree is
inspected. The play tactic and apply tactic commands are used to replay a script,
as a script is recorded using a subset of the tactic language. All intermediate sub-
goals are displayed by play tactic, whereas the apply tactic command displays
only the residual unproven leaf goals. A script can be applied to goals other
than the one from which it was recorded, but there is only a slim chance of this
succeeding.
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Once a collection of scripts has been accumulated, it is sometimes desirable to
replay them to assess whether they are all still valid. This can be requested using
the -S command-line option to cadiz. This option can be combined with any
mode (-v, -x, =P, etc). It replays the scripts of conjectures in the given file and
also conjectures of parent sections from other files, and produces a report to the
standard error stream (the shell window from which cadiz was invoked). This
option assumes that the default names for scripts have been used.

6. Printing a proof

The documents presented in the left-hand and proof tree windows can be printed,
but would not be a satisfactory printed presentation of a proof because they omit
the information in the links that cadiz maintains between them. A self-contained
document presenting all the details of a proof can be generated by inspecting any
node in the proof tree and choosing the printed proof command. This produces,
in the proof tree window, a more traditional presentation of the proof of the goal
corresponding to the inspected node. (Be sure to inspect the root of the whole tree
if you want to see the whole proof.) Each goal is followed by the command name
of the proof step that was applied to it. The selections to which the command
was applied are marked. Where more than one sub-goal was generated, these are
labelled with numbers. Each number appears again where the presentation of
the proof of the goal that it labels resumes. A proof need not be complete: goals
without proof are flagged as NOT PROVEN. Parts of the proof that are elided from
the tree because of /iff steps are not shown. To make them be shown, the /ift
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steps must be “undone” first using the unlift (or other attempts) command.

This presentation of a proof can be sent to a printer using the previewer’s printer
command (in its button 3 menu). (The print command can be edited, allowing
the proof to be directed to any shell command.) Inspecting anything in this
presentation of the proof offers only the proof free command, which reverts this
window to showing the previous proof tree. Applying a proof step has the same
effect.

7. Avoiding variable capture

The bindings of names to declarations in Z are determined statically: each name
is bound to the declaration with the closest surrounding scope. These bindings
are inferred by cadiz’s typechecker, and can be inspected using the declaration
command.

All proof steps rearrange formulae, some of them moving expressions into different
scopes, as the following example illustrates.

te{Seu} = dSet=u

This proof step says that a value is in the set denoted by a comprehension if
and only if there exist values for the components of the schema for which the
value is equal to the value in the set. The relevant facet of this proof step is the
movement of expression t into the scope of the declarations of §. For example,
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suppose we have this conjecture

[PERSON] p : PERSON
-7
p € {p: PERSON e p}

and we apply the above proof rule to the consequent.

[PERSON] p : PERSON
F?
dp: PERSON ep=1p

The result has an equality between p and p, where one p is intended to be bound
to the declaration of the whole sequent, but instead that name is “captured” by
the declaration within the existential predicate. This is the so-called “variable
capture” problem.

cadiz uses an unconventional approach to the variable capture problem. Since
its typechecker inferred the bindings, cadiz can remember the bindings regardless
of rearrangements arising from proof steps. When the resulting sequents are
presented to the user as text, cadiz automatically renames any declarations, along
with names bound to them, whereever those declarations would otherwise capture
references to other declarations. The new names are formed by the addition of 0
subscripts, so are easily recognised. Internally, the original names are retained.

[PERSON] p : PERSON
F?
dpo : PERSON e p = p,
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If the user subsequently finds it necessary to type in one of these names (as
might be required with the cut apart or quantification tac commands), it is best
explicitly to rename the declaration first (using the new name command).

The conventional approach would have been to disable proof steps that would
otherwise cause variable capture, hence requiring the user explicitly to rename
declarations so as to enable use of the proof step. Another approach that might
work in other contexts would be to automatically rename on doing the proof step,
and to use the new names henceforth.

Schemas cause problems for all three approaches. The new name command has
had to be restricted to avoid renaming components of schema expressions, as
that would break some schema calculus operations. (Renaming components of
schemas used as declarations is sound.) Also, it should not always be necessary
to expand a reference to a named schema to be able to rename its components.
This is solved by generating renaming notation. Once a declaration is renamed,
all references to it are renamed, but then references concealed in theta expressions
and schema predicates are a problem: this is solved by generating substitution
notation.

In the cadiz approach, the renaming and substitution notation is generated on
presenting text to the user; it is not itself inspectable, which might be surprising
but for the obvious 0 subscripts.
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8. The proof steps

The proof steps are invoked by commands listed in the button 2 menu. Each
proof step is presented as a general template, reflecting the fact that it can be
applied to many different sequents. A variable name in a template can match
any formula of the appropriate syntactic class:
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denote predicates

denote expressions

denotes the name of a free type

denotes the name of a free type injection
denotes the name of a free type element
denote names

denotes a declaration

denote schemas

denotes a binding

denotes a list of declarations

denotes a quantifier

The symbol 7 denotes an expression used as a type, the notation 7 e denoting
the expression that stands for the type of expression e. The formulae sig(ds) and
pred(ds) denote the signature and property respectively of the declarations ds.
The notation chartuple S denotes the characteristic tuple of S.

Z permits omission of the characteristic tuples of set comprehensions and mu ex-
pressions, the | parts of schema texts, and the instantiations of references to gen-
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eric declarations. In each case, rules exist for determining defaults for the omitted
formulae. The proof rules are all stated in a form without omitted formulae, but
are nevertheless applicable where those formulae are omitted. Commands are
provided for making omitted formulae visible.

Declarations, antecedent and consequent predicates that are not changed by a
proof step are not mentioned in its presentation.

8.1. Proof rules

Proof rules’ sub-goals have different numbers of declarations, antecedents or con-
sequents to the original goals. A proof rule is depicted like this.

sub-goals

goal

A proof rule states that goal is a theorem if all sub-goals are theorems.

There is a complete list of proof rule commands in the reference manual.

8.2. In situ replacements

In situ replacements cause an inspected formula to be replaced by another formula
implied by the original inspected formula. Several formulae can be replaced in
one command: all but one must be selected and crossed (using the previewer’s
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x command), then the last should be inspected. The same command must be
applicable to all the selections.

In situ replacements are depicted like this.
original =  replacement

There are a large number of in situ replacement steps, grouped into families
according to the names of the commands that invoke them. There is a complete
list of in situ replacement commands in the reference manual.

cadiz permits use of in situ replacement steps within axiomatic, schema and free
type paragraphs, as well as sequents, enabling some simplification of those other
paragraphs to be done.

8.3. Lemmas

From cadiz’s perspective, lemmas are supported by the lermma and cut conjoined
and cut disjoined and cut apart proof rules. From our perspective, however, they
are a distinct proof concept and worthy of separate discussion here.

Lemmas are useful in structuring proofs into manageable parts. They often taken
the form of equivalences or equalities, enabling replacement of a formula in the
goal by an equivalent predicate or equal expression respectively (by subsequent
use of the Leibniz command). This composition gives an effect similar to an in
situ replacement, but one that can be a much larger reasoning step than any
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elementary in situ replacement. Although the resulting proofs may appear to be
much shorter, note that all of the lemmas must themselves be formally proven
before cadiz will regard the original conjecture as being formally proven.

8.4. Decision procedures

From cadiz’s perspective, decision procedures are just in situ replacements. From
our perspective, however, they differ from other in situ replacements in perform-
ing complicated reasoning that cannot be presented as a simple rewrite rule.

The linear decision command solves linear arithmetic problems by the SUP-INF
method. The heuristic decision command can solve some non-linear arithmetic
problems using simulated annealing. The model check command solves some
finite problems by model checking (using CMU’s SMV). The resolution command
solves trivial first-order predicates that can be decided regardless of any free
variables.

Further commands are provided to reveal solutions found by these decision pro-
cedures. There is a list of decision procedure commands in the reference manual.

8.5. Built-in tactics

Those commands whose names end in tac have effects that would be achievable
by combinations of more elementary proof steps, except that the tactic language
cannot or could not express those combinations.
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8.6. Annotations

Informal text can be attached to a goal in a proof using the annotation com-
mand. As there is not enough time to prove everything formally, this command
is convenient for use in lieu of a formal proof.

9. Tactic language

The tactic language is intended to support the expression of search strategies to
find effective compositions of inference rules. A subset of it suffices for recording
scripts of specific proofs, as already mentioned above.

Tactics can appear within specifications and also in separate files. Both are
applied using either the play tactic or apply tactic commands, which offer a
menu of applicable tactics and the option of a dialogue box into which to type
a filename. Tactics within the specification are thus easier to apply, but they
cannot be revised within a cadiz session. The difference between play tactic and
apply tactic is that the former reveals the proof steps taken by the tactic, whereas
the latter is presented as a single step.

The toolkit defines some tactics for simplifying core Z formulae, and for unfolding
applications of operators. This enables a style of proof that alternates between
unfolding operations and simplifying, thus avoiding manual use of many of the
elementary proof steps.

The documentation of the tactic language currently comprises a draft paper that
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serves as a tutorial, and formal descriptions of its troff mark-up and LaTeX mark-
up and syntax and semantics as separate entries in the reference manual.

10. Obtaining conjectures to prove

The Z notation allows the statement of conjectures, but says little about what
conjectures to state. A formal method combines a formal notation with rules
about how it should be used, and consequently gives rise to conjectures to verify
that the rules have been obeyed. As cadiz aims to support the Z notation,
independent of any particular method, it automatically generates few conjectures.

Properties that a specifier believes should be consequences of the specification
may be formulated as conjectures within the specification. The laws in the toolkit
are examples of such manually-formulated conjectures.

The cxists conjecture command generates a conjecture to ensure that values can
be found for the variables of a (generic) axiomatic paragraph, i.e. that there are
no contradictions in the constraints between them.

The refinement commands generate verification conditions.

The local V(s and all V(s commands generate compliance verification conditions
to ensure that SPARK code complies with the Z specification.

The tame conjecture command generates the proof obligation whose proof is
required to be certain that a generic function is tame.
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11. Script manager

The script manager provides a summary of the statuses of the scripts of the
specification’s conjectures. This display is provided in the proof tree window at
the beginning of a cadiz session, and can be redisplayed subsequently using the
script manager command. It assumes that the default naming convention for
scripts has been used.

12. General observations

Conducting proof solely with elementary proof steps is too tedious: tools like
the decision procedures and tactics are necessary if the prover is to be effective.
Perhaps decision procedures can be found for proof obligations generated in very
restricted contexts. However, it is too much to hope that tactics could be written
that would act as decision procedures for arbitrary conjectures: proof in gen-
eral involves searching in an incomputably large space, and hence is impractical
without the guidance that only a human can provide.

There will never be enough time to prove all the things that could be conjectured
about software. For best productivity, the theorem prover should keep itself
busy sorting out the trivial mathematics, and the user busy directing an overall
strategy.

IT 29-Oct-2000
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