This example Z specification dates from the occasion when a colleague decided
he wanted to try a heart rate monitor (HRM), and organized a group of us to
share the cost. The specification addresses the problem of ensuring fair usage of
the HRM.

section share parents toolkit

[Person]

There is a set of persons, not all of whom are shareholders. (We should really
specify a minimum size for this set.) Conversely, all shareholders are persons.
(Pets are excluded, or if you prefer are treated as persons.)

‘ Time ==

Times are represented by ordinal numbers.

Share

key : N |
last_used : Time |

Each share has a key to distinguish it from other shares and records the time at
which its bearer last used the HRM.

State
|7bearer : Share + Person |

location : Person |

The state comprises a function from the born shares to persons (every share is
born by one person), and a location, that is the person currently in possession of
the HRM. This does not exclude one person from bearing more than one share,
though we might want to reconsider this. It assumes that several people would
not want to share a single share.

’ instigator : Person

__InitState
AState

bearer’ = {({ key == 0, last_used == 0 |), instigator)}
location’ = instigator |

In the initial state, the instigator bears the sole share and has possession of the
HRM.

__ IssueShare
AState
new_punter? : Person

bearer’ = bearer®
{s' : Share | s".key = #(dom bearer) A
s’ last_used = max{s : dom bearer e s.last_used} + 1 e
(s', new_punter?)}
location’ = location |

A new share can be issued to a person, though in practice this will require the
consent of the existing shareholders, as their shares will decrease in value as a
result. The new share’s timestamp is set so as to give precedence to existing
shareholders. The HRM remains with whoever already had possession of it.

_ AcquireShare
AState
punters? : P Person

Vp : punters? e
min{s : dom(bearer > {location’}) e s.last_used} =
min{s : dom(bearer > {p}) ® s.last_used}
s : dom(bearer > {location’}) e
bearer’ = bearer®
{ps'": Share |
s key = s.key N\
s'.last_used = max{s2 : dom bearer ® s2.last_used} + 1 ®
(s', bearer s)} |

The Acquire operation defines how a conflict between a set of persons all wanting
to use the HRM at the same time is resolved: the person bearing a share that
shows that person to have used the HRM least recently acquires possession of
the HRM. The timestamp in that share is revised. The case of only one person
wishing to use the HRM at a particular time is a special case that is covered by
this general operation. The case of the same person holding more than one share
that have all been used less recently that those of the other persons is resolved
non-deterministically: any one of those shares has its timestamp revised.

__ TransferShare
AState
vendor?, purchaser? : Person
share? : Share

(share?, vendor?) € bearer
bearer’ = bearer @ {(share?, purchaser?)}
location’ = if location = vendor? then purchaser? else location |

Shares can be transferred from one person to another, for example when a person
leaves York. If that person is currently in possession of the HRM, the HRM is
also transferred to the purchaser. Whether the vendor engages in a search for a
highest bidder is outside the scope of this specification.

There is no operation to destroy a share; a share can simply fall into disuse.

Postscript: the instigator left, taking the HRM with him, and then refunding the
shareholders!

