Application program interface
/Reference manual/Developer’s notes

The API provides the following.

celltype bottom; /* unique "unknown" cell */
listtype nil; /* unique empty list */

l dectype equalsdec; /* declaration of relational operator (= _) */

listtype documents; /* abstract syntax tree of whole spec */
sttype symtable; /* symbol table x/

typedef enum {BY_PIPE, BY_SOCKET} apimode;
typedef enum {WHOLE_SPEC, NEEDED_PARAS} biomode;
typedef enum {CORRECT, WRONG, QUITTED} checkerstatus;

checkerstatus cadiz_init(apimode amode, biomode bmode, char *prog, char >
listtype cadiz_command(cmdtype cmd);

void cadiz_kill(void);

void cadiz_suicide(void);

To use the above, source must include the following.

#include "api.h"

The following libraries have to be linked. They are listed in an acceptable order;

other orders might not work.
api.a list.a types.a handles.o heap.a misc.a eject.a

The cadiz_init function invokes cadiz as a separate process using the given
prog and arg list. For example... cadiz_init (BY_PIPE, WHOLE SPEC, '"cadiz",
n_vn ||_1|| "spec.z" NULL)

cadiz_init sets up communication streams to receive the data structures rep-
resenting a typechecked 7 specification and to allow subsequent invocation of
commands and receipt of results. The first argument determines the mechanism
used for these streams. If there is already a cadiz process created by this means,
cadiz init calls cadiz kill first—there can be only one at once. It waits for
cadiz to typecheck the specification. If no errors are detected in the specification,
the root pointers bottom, nil, equalsdec, documents and symtable are initial-
ized, and CORRECT is returned. How much of the specification is transferred at
once is determined by the second argument to cadiz init. If some errors are
detected in the specification, WRONG is returned. If cadiz cannot be executed, or
if it is quitted by the user before typechecking is completed, QUITTED is returned.

The cadiz_command function causes execution of command cmd by cadiz. The
cmd has attributes for the command’s operands, which should have been set to
selections referring to parts of the abstract syntax tree or to literals as appropriate
for the command. See src/lib/types/cmd.d for specification of these attributes.
A list is returned of those paragraphs that the command would have added to the
left-hand window if cadiz had been run interactively. Commands which engage in
other interaction, such as dialogue boxes, might not work through this interface.

The cadiz kill function causes the process created by cadiz_init to terminate,
and waits for it to do so (thus ensuring that any output streams are flushed).

The cadiz_suicide function blocks the invoking process until the cadiz process

itself chooses to exit.
For an example of the use of this API, see src/procs/apitest/.

When a Z paragraph (def) or declaration (dec) is an argument to a command,
cadiz uses any existing copy of that data structure in preference to the command’s
argument. Other data structures are copied afresh. In practice, problems arising
from this can be avoided by using an applicative style of coding, building new
abstract syntax trees in preference to modifying existing ones. The reverse situ-
ation, where cadiz modifies an attribute of a goal of which a copy has previously
been made across the API, has no correspondingly simple solution. The reasons
for this are explained in “Efficient Binary Transfer of Pointer Structures” by Ian
Toyn and Alan J. Dix, Software — Practice and Experience, 24(11) pp1001-1023
November 1994.

IT 24-Apr-2002

