
Page 1 of 11

J I

Go Back

Full Screen

Close

Quit

Tactic Syntax
/Reference manual

1. Introduction

The syntax of tactics is a CADiZ-specific extension to the standard Z syntax.

This syntax refers to some non-terminal symbols of the standard syntax, as well
as to tokens of the standard lexis and to tokens specific to tactics, all of which
are defined elsewhere.

The syntax is formalized below using syntactic metalanguage.

2. Formal definition of tactic syntax

Goal = GOAL, [[,NAME , {, ,NAME},]],Hyp,`? ,Concs ;

Hyp = DeclPart , {†,DeclPart}, [|,Antes];

Antes = [Predicate, {, ,Predicate}];

Concs = [Predicate, {, ,Predicate}];

NamedTacticDef = TACTIC ,NAME ,TacticDef ;

Page 2 of 11

J I

Go Back

Full Screen

Close

Quit

TacticDef = TypedJoker , {, ,TypedJoker}, |,Tactic;

TypedJoker = expr ,NAME
| pred ,NAME
| decl ,NAME
| goal ,NAME
| exprs ,NAME
| decls ,NAME
| stxt ,NAME
| name,NAME
| names ,NAME
| type,NAME
| str ,NAME
;

Page 3 of 11

J I

Go Back

Full Screen

Close

Quit

Tactic = RuleName,RuleArg , {RuleArg} (* rule application *)
| Tactic, ; ,Tactic (* sequential composition *)
| (,Tactic, ||,Tactic, {||,Tactic},) (* parallel composition *)
| (,Tactic, !!,Tactic, {!!,Tactic},) (* script composition *)
| map,Tactic (* n-ary composition *)
| Tactic, |,Tactic (* alternation *)
| !,Tactic (* curtailment *)
| skip (* skip *)
| fail (* fail *)
| rec,NAME , •,Tactic (* recursive *)
| RecJoker
| (,Tactic,) (* parenthesized *)
| match,ExprJoker ,ExprCase, {ExprCase}, ::, . (* expression match *)
| match,PredJoker ,PredCase, {PredCase}, ::, . (* predicate match *)
| match,ExprsJoker ,ExprsCase, {ExprsCase}, ::, . (* expressions match *)
| match,DeclsJoker ,DeclsCase, {DeclsCase}, ::, . (* declarations match *)
| match, StxtJoker , StxtCase, {StxtCase}, ::, . (* schema text match *)
| match,DeclJoker ,DeclCase, {DeclCase}, ::, . (* declaration match *)
| match,NamesJoker ,NamesCase, {NamesCase}, ::, . (* names match *)
| match,TypeJoker ,TypeCase, {TypeCase}, ::, . (* type match *)
| patante , pred ,NAME , |,NUMBER, •,Tactic (* antecedent pattern *)
| patcons , pred ,NAME , |,NUMBER, •,Tactic (* consequent pattern *)
| patgoal , [TypedJoker , {, ,TypedJoker}], |,Hyp,`? ,Concs , •,Tactic (* goal pattern *)
| let, [TacBinding , {, ,TacBinding}], •,Tactic (* local patterns *)
;

Page 4 of 11

J I

Go Back

Full Screen

Close

Quit

ExprCase = ::, [TypedJoker , {, ,TypedJoker}], |,Expression, •, {|,Expression, •},Tactic;

PredCase = ::, [TypedJoker , {, ,TypedJoker}], |,Predicate, •, {|,Predicate, •},Tactic;

ExprsCase = ::, [TypedJoker , {, ,TypedJoker}], |,Expressions , •, {|,Expressions , •},Tactic;

DeclsCase = ::, [TypedJoker , {, ,TypedJoker}], |,DeclPart , •, {|,DeclPart , •},Tactic;

StxtCase = ::, [TypedJoker , {, ,TypedJoker}], |, SchemaText , •, {|, SchemaText , •},Tactic;

DeclCase = ::, [TypedJoker , {, ,TypedJoker}], |,Declaration, •, {|,Declaration, •},Tactic;

NamesCase = ::, [TypedJoker , {, ,TypedJoker}], |, [DeclName, {, ,DeclName}], •,
{|, [DeclName, {, ,DeclName}], •},Tactic;

TypeCase = ::, [TypedJoker , {, ,TypedJoker}], |,Type, •, {|,Type, •},Tactic;

RuleName = STRING ;

Page 5 of 11

J I

Go Back

Full Screen

Close

Quit

RuleArg = NUMBER
| STRING
| (, String , {++, String},)
| ExprJoker
| PredJoker
| DeclJoker
| GoalJoker
| ExprsJoker
| DeclsJoker
| StxtJoker
| NameJoker
| NamesJoker
| TypeJoker
| StringJoker
;

Page 6 of 11

J I

Go Back

Full Screen

Close

Quit

String = STRING
| ExprJoker
| PredJoker
| DeclJoker
| ExprsJoker
| DeclsJoker
| StxtJoker
| NameJoker
| NamesJoker
| TypeJoker
| StringJoker
;

TacBinding = [TypedJoker , {, ,TypedJoker}],==,TacFunction;

Page 7 of 11

J I

Go Back

Full Screen

Close

Quit

TacFunction = antecedent , [−],NUMBER
| consequent , [−],NUMBER
| parseexpr , STRING
| parseexprs , STRING
| parsepred , STRING
| parsedecl , STRING
| parsename, STRING
| parsestxt , STRING
| declsbefore,DeclsJoker
| declsafter ,DeclsJoker
| typeof ,ExprJoker
| declof ,ExprJoker
;

Page 8 of 11

J I

Go Back

Full Screen

Close

Quit

Expression = ExprJoker
| (,ExprJoker ,)
| ExprJoker , as ,Expression
| expr
| all Expression productions of the standard syntax
;

ExpressionList = ExprsJoker
| ExprsJoker , as ,ExpressionList
| exprs
| all ExpressionList productions of the standard syntax
;

Predicate = PredJoker
| (,PredJoker ,)
| PredJoker , as ,Predicate
| pred
| all Predicate productions of the standard syntax
;

SchemaText = StxtJoker
| (, StxtJoker ,)
| StxtJoker , as , SchemaText
| stxt
| all SchemaText productions of the standard syntax
;

DeclPart = DeclsJoker
| (,DeclsJoker ,)
| DeclsJoker , as ,DeclPart
| decls
| all DeclPart productions of the standard syntax
;

Declaration = DeclJoker
| (,DeclJoker ,)
| DeclJoker , as ,Declaration
| decl
| all Declaration productions of the standard syntax
;

DeclName = NameJoker
| name
| NameJoker , as ,DeclName
| all DeclName productions of the standard syntax
;

RefName = NameJoker
| NameJoker , as ,RefName
| name
| all RefName productions of the standard syntax
;

Type = TypeJoker
| type
| all Type productions of the standard syntax
;

Paragraph = Goal
| NamedTacticDef
| all Paragraph productions of the standard syntax bar conjectures
;

Page 9 of 11

J I

Go Back

Full Screen

Close

Quit

Analogously, names jokers can be used in the name list of a hiding expression,
along with as patterns and wildcards.

2.1. Operator precedences and associativities

The following table defines the relative precedences of productions and the asso-
ciativities of their operators. The productions are identified by their rightmost
tokens. The rows in the table are ordered so that those entries that bind more
weakly appear nearer the top of the table than those that bind more tightly.
Those operators that have the same names as Z operators conveniently share the
same precedences as those Z operators.

Productions Associativity
as right
• | right
; left
! right

Parentheses may be used to override the default precedences.

3. Notes

GOAL and TACTIC are box tokens, distinguishing the two new kinds of para-
graph.

Page 10 of 11

J I

Go Back

Full Screen

Close

Quit

The Goal syntax recognises all conjectures of the standard syntax, and so sub-
sumes the Conjecture syntax.

A Goal in a specification may have a name associated with it. The name is
written within the mark-up of the paragraph outline, so is not mentioned in this
syntax.

TacticDef phrases can appear in text files, in which case the name of the tactic
is identified with the name of the file, whereas in specifications the name is given
by the NamedTacticDef paragraph in which it appears.

The TypedJoker notation introduces a new joker, the scope of which is limited to
the production that declares it. This condition is enforced by the lexer, as names
are mapped to joker tokens through the keyword look-up table.

A DeclJoker joker is associated with a single declaration, i.e. either a schema
inclusion or the declaration of a single name. Hence in a DeclCase, a pattern
having multiple names can never match.

The declaration jokers DeclJoker and DeclsJoker can also be used in those con-
texts where the standard syntax permits only constant declarations, namely bind-
ing extension expressions and subsitution expressions.

The expression list jokers ExprsJoker can be used in tuple extensions, set exten-
sions, generic instantiations and sequence arguments. They cannot yet be used
in cartesian products, for which a special syntax will be needed.

RuleArgs take the place of interactive selections and dialogue responses. The
dialogue responses are listed first in order, followed by the selections in the same

Page 11 of 11

J I

Go Back

Full Screen

Close

Quit

order as they would be made interactively. Each selection is represented by a
number n, identifying the n’th well-formed formula in the current goal. Each
dialogue response is represented by a string. Jokers, as bound to formulae by
earlier pattern matching, may be used as selections or dialogue responses. Dia-
logue response strings may be constructed from the concatenation of smaller
strings. A str argument is typically used to parametrise a tactic on the name of
an arbitrary auxiliary tactic.

General purpose tactics may be written independently of specifications. Where a
specification applies a function operator, a tactic can use a juxtaposed function
application as a pattern to match against the operator application. Where a
specification applies a relation operator, a tactic can use a membership predicate
as a pattern to match against the operator application. Where a specification
applies a generic operator, a tactic can use a generic instantiation expression as
a pattern to match against the operator application.

IT 12-Jan-2002

	Introduction
	Formal definition of tactic syntax
	Operator precedences and associativities

	Notes

