
Page 1 of 8

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Introduction

3 ISO Standard lexis

3.1 Formal . . .

3.2 Additional . . .

3.3 Notes on . . .

3.4 Informal . . .

4 CADiZ-specific lexis

Lexis
/Reference manual

1. Contents of this page

• Introduction

• ISO Standard lexis

– Formal definition of context-free lexis

– Additional lexical rules

– Notes on context-free lexis

– Informal definition of context-sensitive lexis

• CADiZ-specific lexis

2. Introduction

The lexis defines the translation from sequences of UCS characters to tokens (or
lexemes) of the syntax, such as NAME and NUMERAL. It is performed in two
phases: the context-free phase, then the context-sensitive phase.

The context-free lexis is formalized below using syntactic metalanguage.

Page 2 of 8

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Introduction

3 ISO Standard lexis

3.1 Formal . . .

3.2 Additional . . .

3.3 Notes on . . .

3.4 Informal . . .

4 CADiZ-specific lexis

3. ISO Standard lexis

3.1. Formal definition of context-free lexis

This formal definition is public domain material, and appears as it appears in
ISO/IEC 13568:2002 (the Z standard).

TOKENSTREAM = {SPACE}, {TOKEN , {SPACE}};

TOKEN = DECORWORD | NUMERAL | STROKE
| (−tok |)− tok | [−tok |]− tok | {−tok |} − tok | 〈|||〉 | 〈〈|〉〉
| ZED | AX | GENAX | SCH | GENSCH | END | NL
;

DECORWORD = WORD , {STROKE};

WORD = WORDPART , {WORDPART}
| (LETTER | (DIGIT −−− DECIMAL)),ALPHASTR, {WORDPART}
| SYMBOL, SYMBOLSTR, {WORDPART}
;

WORDPART = WORDGLUE , (ALPHASTR | SYMBOLSTR);

ALPHASTR = {LETTER | DIGIT};

SYMBOLSTR = {SYMBOL};

Page 3 of 8

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Introduction

3 ISO Standard lexis

3.1 Formal . . .

3.2 Additional . . .

3.3 Notes on . . .

3.4 Informal . . .

4 CADiZ-specific lexis

NUMERAL = NUMERAL,DECIMAL
| DECIMAL
;

STROKE = STROKECHAR
| ′ ↘′,DECIMAL,′↖′
;

(−tok = ′(′;
)− tok = ′)′;
[−tok = ′[′;
]− tok = ′]′;
{−tok = ′{′;
} − tok = ′}′;
〈| = ′〈|′;
|〉 = ′ |〉′;
〈〈 = ′〈〈′;
〉〉 = ′〉〉′;

ZED = ZEDCHAR;
AX = AXCHAR;
SCH = SCHCHAR;
GENAX = GENAXCHAR;
GENSCH = GENSCHCHAR;
END = ENDCHAR;
NL = NLCHAR;

Page 4 of 8

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Introduction

3 ISO Standard lexis

3.1 Formal . . .

3.2 Additional . . .

3.3 Notes on . . .

3.4 Informal . . .

4 CADiZ-specific lexis

3.2. Additional lexical rules

The above formal definition contains an ambiguity regarding individually sub-
scripted decimal digits at the end of a WORD . These are lexed as STROKE s,
not as glued WORDPART s. Multiple digit subscripts at the end of a WORD
can be lexed only as glued WORDPART s, yet look the same, and so use of them
is deprecated.

3.3. Notes on context-free lexis

SPACE characters are necessary between neighbouring characters when lex-
ing gives two tokens and would otherwise give a single token. The situations
where SPACE is needed are: between two neighbouring WORDs (otherwise
a single WORD); between two neighbouring NUMERALs (otherwise a single
NUMERAL); between a WORD and a NUMERAL (otherwise a single WORD);
and between a DECORWORD and a STROKE (otherwise a single DECORWORD).
SPACE characters are never needed around the brackets enumerated above, as
those are SPECIAL characters that cannot appear in larger tokens.

The lexis of WORD tokens allows alphanumeric and symbolic parts to be glued
together within a WORD , while neighbouring letters and symbols (with no in-
tervening WORDGLUE or SPACE) are lexed as separate tokens.

More discussion of these issues may be found in [?].

Page 5 of 8

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Introduction

3 ISO Standard lexis

3.1 Formal . . .

3.2 Additional . . .

3.3 Notes on . . .

3.4 Informal . . .

4 CADiZ-specific lexis

3.4. Informal definition of context-sensitive lexis

All SPACE s are elided from the TOKENSTREAM .

Those NL tokens that appear within a formula (rather than between formulae) are
elided, i.e. those preceded immediately by a prefix or infix notation, or followed
immediately by a postfix or infix notation.

Each DECORWORD token is replaced by either a keyword token (if its spelling,
including strokes, is that of a keyword), an operator token (if its spelling, exclud-
ing strokes, is that of an operator word), or the token NAME otherwise.

The keywords and the operator tokens, classified for the elision of NL tokens, are
as follows.

Infix: else function generic leftassoc parents relation rightassoc section then ::= |
−tok 〈〈 〉〉 ampersand `? , , ∧ ∨ ⇒ ⇔ × / =

−tok ∈ == : ; −tok . • \ � o
9 >> I IP EL ELP ERE EREP ES SS SRE SREP

Prefix: if let pre [−tok ¬ ∀ ∃ ∃1 P (−tok {−tok 〈| λ µ θ PRE PREP L LP

Postfix:]− tok)− tok }− tok |〉 POST POSTP ER ERP SR SRP

Nofix: false true NAME NUMERAL STROKE

Page 6 of 8

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Introduction

3 ISO Standard lexis

3.1 Formal . . .

3.2 Additional . . .

3.3 Notes on . . .

3.4 Informal . . .

4 CADiZ-specific lexis

4. CADiZ-specific lexis

CADiZ redefines NUMERAL to permit floating-point numerals, formally defined
as follows.

NUMERAL = DECIMAL, {DECIMAL}, [′.′,DECIMAL, {DECIMAL}], [′E ′, [′+′ |′ −′],DECIMAL, {DECIMAL}];

There is no limit on the size of a numeral. The . and E characters in this
formalisation are taken to be part of the NUMERAL only if no space precedes
them. Examples of numerals accepted by cadiz include 42, 3.1415926, 1E3 and
2.5E-16. The following are not recognised as numerals: -42, 3., .1415926 and
1e3.

In the TOKEN rule, CADiZ adds STRING as another alternative, whose syntax
is based on that of string literals in the C programming language, formally defined
as follows.

STRING = ′”′, {STRCHAR},′ ”′;

STRCHAR = ′\′,ESCAPE
| ? any UCS character other than ′\′, ′”′ and NLCHAR ?
;

Page 7 of 8

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Introduction

3 ISO Standard lexis

3.1 Formal . . .

3.2 Additional . . .

3.3 Notes on . . .

3.4 Informal . . .

4 CADiZ-specific lexis

ESCAPE = ′n ′ (* linefeed *)
| ′t ′ (* tab *)
| ′b ′ (* backspace *)
| ′r ′ (* return *)
| ′f ′ (* form-feed *)
| ′”′ (* ” *)
| ′\′ (* backslash *)
| NLCHAR (* continuation (elided) *)
| OCTAL | OCTAL,OCTAL | OCTAL,OCTAL,OCTAL (* base 8 encoding *)
| ′u ′,HEX ,HEX ,HEX ,HEX (* encoding on BMP *)
| ′U ′,HEX ,HEX ,HEX ,HEX ,HEX ,HEX ,HEX ,HEX (* UCS encoding *)
;

OCTAL = ′0′ |′ 1′ |′ 2′ |′ 3′ |′ 4′ |′ 5′ |′ 6′ |′ 7′;

HEX = ′0′ |′ 1′ |′ 2′ |′ 3′ |′ 4′ |′ 5′ |′ 6′ |′ 7′ |′ 8′ |′ 9′ |′ a ′ |′ b ′ |′ c ′ |′ d ′ |′ e ′ |′ f ′ |′ A′ |′ B ′ |′ C ′ |′ D ′ |′ E ′ |′ F ′;

There is no limit on the length of a string. The character ′”′ remains in the
SYMBOL class and can be used in a WORDPART , but not as the first character
in a WORD .

The class of infix tokens is extended with undecor , Y, ⊕ and †.

The class of prefix tokens is extended with post .

The class of nofix tokens is extended with STRING .

The uses of these additional tokens are documented in extensions. To check that
a Z specification uses only ISO Standard notations, invoke cadiz with the -ws

Page 8 of 8

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Introduction

3 ISO Standard lexis

3.1 Formal . . .

3.2 Additional . . .

3.3 Notes on . . .

3.4 Informal . . .

4 CADiZ-specific lexis

option.

IT 28-Jan-2002

	Contents of this page
	Introduction
	ISO Standard lexis
	Formal definition of context-free lexis
	Additional lexical rules
	Notes on context-free lexis
	Informal definition of context-sensitive lexis

	CADiZ-specific lexis

