
Page 1 of 9

J I

Go Back

Full Screen

Close

Quit

A Z Specification of a Z Preprocessor
/example Z specifications

1. Introduction

A specification written in standard Z [?] is comprised of a sequence of sections
[?], each of which has a name and includes the paragraphs of other sections
known as its parents. For compatibility with traditional Z [?], a sequence of
paragraphs is accepted as comprising the sections of the mathematical toolkit
and an anonymous section containing those paragraphs.

This document is a standard Z specification of a preprocessor for Z specifications.
The preprocessor’s job is to dispense with the non-standardised notion of file, in
which sections are stored in a file system, and to permute sections into a definition
before use order as assumed by the Z standard.

This specification assumes that a file contains a sequence of paragraphs: the
preprocessor needs to distinguish formal and informal paragraphs, and to identify
section headers, but it does not need to parse the Z text within formal paragraphs.
There can be several sections within a single file, in which case it can be useful
for the file to have several names (links in UNIX terminology).

Any references to parent sections that have not yet been read are presumed
to be in files of the same name, and are read from there. Within a file, any
formal paragraphs that are not preceded by a section header are treated as if

Page 2 of 9

J I

Go Back

Full Screen

Close

Quit

there had been a section header whose name is that of the file and which has
standard toolkit as parent. This is similar to the treatment of anonymous sections
in the Z standard. A file’s name need not be the same as any of the sections it
contains, in which case that name is useless from the point of view of finding
parent sections, but it is useful as a starting point for a whole specification.

2. Specification

This specification makes use of the standard mathematical toolkit.

section preprocessor parents standard toolkit

2.1. Data types

Strings are encoded in ASCII (to be compatible with the treatment of string
literal expressions by version 3.13 of the CADiZ tool [?], which has checked this
specification).

String ::= string〈〈seq(0 . . 127)〉〉

Names (of files and sections) are represented by strings. (The form of names
would be irrelevant to this specification but for ”standard toolkit”.)

Name ::= name〈〈String〉〉

Page 3 of 9

J I

Go Back

Full Screen

Close

Quit

Only certain kinds of paragraphs need be distinguished. Informal text between
formal paragraphs is retained for possible display in the same order between the
formal paragraphs. Section headers are treated like paragraphs in this specifica-
tion.

Paragraph ::= Informal〈〈String〉〉
| Section header〈〈[name : Name; parent set : FName]〉〉
| Formal〈〈String〉〉

The file system is modelled as a function from pathnames (formed of directory
and file names) to sequences of paragraphs. This avoids having to specify the
parsing of files of text. Section headers can have been distinguished by the section
keyword.

Directory == Name

File system ::= file system〈〈Directory × Name 7→ seq Paragraph〉〉

Sections are represented as sequences of paragraphs in which an explicit section
header begins each section.

Section ==
{ps : seq1 Paragraph
| head ps ∈ ran Section header
∧ ran(tail ps) ∩ ran Section header = ∅}

Page 4 of 9

J I

Go Back

Full Screen

Close

Quit

2.2. Environment

This specification operates in an environment comprising: the file system fs ; the
current working directory name cwd ; the name of the directory containing the
toolkit sections toolkit dir ; and an environment variable SECTIONPATH giving
the names of other directories from which sections may be read. The environment
is modelled as the global state of the specification. Its value is not changed by
the specification.

fs : File system
cwd , toolkit dir : Directory
SECTIONPATH : seq Directory

2.3. Functions

The function section to name is given a section and returns the name of that
section. The name returned is that in the section header that is the section’s first
paragraph.

section to name ==
λ s : Section • ((Section header∼) (head s)).name

The function sections to parents is given a set of sections and returns the set
containing the names of the parents referenced by those sections.

Page 5 of 9

J I

Go Back

Full Screen

Close

Quit

sections to parents ==
λ ss : F Section •⋃

{s : ss • ((Section header∼) (head s)).parent set}

The function filename to paras is given a search path of directory names and a
file name and returns the sequence of paragraphs contained in the first file found
with that name in the path of directories to be searched. If no file with that name
is found, an empty sequence of paragraphs is returned (and an error should be
reported by an implementation).

filename to paras : seq Directory × Name 7→ seq Paragraph

∀ n : Name •
filename to paras (〈〉, n) = 〈〉

∀ d : Directory ; path : seq Directory ; n : Name •
filename to paras (〈d〉a path, n) =

if(d , n) ∈ dom((file system∼) fs)
then(file system∼) fs (d , n)
else filename to paras (path, n)

The function filename to paragraphs is given a filename and returns the sequence
of paragraphs contained in the first file found with that name in the path of
directories to be searched. The current working directory is always searched first,
then whatever directories are explicitly listed in the SECTIONPATH environment
variable, and finally the directory of toolkits.

Page 6 of 9

J I

Go Back

Full Screen

Close

Quit

filename to paragraphs ==
λ n : Name •

filename to paras (〈cwd〉a SECTIONPATH a 〈toolkit dir〉, n)

The function add header reads the named file and prefixes its sequence of para-
graphs with a section header if the file starts with an anonymous section. If the
anonymous section has any formal paragraphs, it is named after the file, otherwise
it is given a different name in case the first named section has that name.

add header ==
λ n : Name •

let ps == filename to paragraphs n •
(µ pref , suff : seq Paragraph | pref a suff = ps ∧

ran pref ∩ ran Section header = ∅ ∧
(suff = ∅ ∨ head suff ∈ ran Section header) •

if pref = ∅ then〈〉
else if ran pref ∩ ran Formal 6= ∅ then
〈Section header〈| name == n,
parent set == {name (string ”standard toolkit”)} |〉〉

else
〈Section header〈| name ==

name(string((string∼) ((name∼) n)a ”informal”)),
parent set == {} |〉〉)

aps

The function filename to sections reads the named file and partitions its sequence

Page 7 of 9

J I

Go Back

Full Screen

Close

Quit

of paragraphs into a sequence of sections.

filename to sections ==
λ n : Name •

(µ ss : seq Section | a/ ss = add header n)

The function read spec is given a set of names of files to be read and a set of
sections already read from files. It returns the set of sections containing those
already read, those read from the named files, and those read from files named
as ancestors of other sections in this set. A file is read only if the named parent
has not already been found in previous files and is not present anywhere in the
current file; the parent section could be defined later in the current file, in which
case any file with the name of the parent is not read. The sections should all
have different names (otherwise an implementation should report an error); this
specification merges sections that are identical.

read spec : FName × F Section → F Section

∀ ss : F Section •
read spec (∅, ss) = ss

∀ ns : FName; ss : F Section •
read spec (ns , ss) =

µ ss2 ==
⋃
{n : ns • ran(filename to sections n)}

| #ss2 = #(section to name(| ss2 |)) •
read spec (sections to parents ss2\

section to name(| ss |),
ss ∪ ss2)

Page 8 of 9

J I

Go Back

Full Screen

Close

Quit

The function order sections is given a set of sections and returns those sections
in a sequence ordered so that every section appears before it is referenced as a
parent. The function is partial because of the possibility of cycles in the parents
relation, about which an implementation should report errors.

order sections ==
{ss : F Section; ss2 : seq Section
| ran ss2 = ss
∧ (∀ ss3 : seq Section | ss3 prefix ss2 •
{section to name(last ss3)}∩
sections to parents (ran(front ss3)) = ∅)

• (ss , ss2)}

The function preprocessor specifies the entire tool. It takes the name of a file, and
returns the ordered sequence of sections from that file and the files of ancestral
sections.

preprocessor ==
λ n : Name • order sections (read spec ({n}, {}))

3. Further work

1. The consistency of this specification has not been formally proven.

2. A task that is best done by the preprocessor, but has not been specified
here, is the extraction from operator template paragraphs of a mapping

Page 9 of 9

J I

Go Back

Full Screen

Close

Quit

from words to tokens for each section, to be consumed by the Z parser, as
implicitly required by the Z standard.

The preprocessor has been implemented and is in use within CADiZ. Some small
bugs were found in this spec—did you spot them? Cadiz reads any cumulus (-l)
file first, and passes the names of the sections so obtained to zpp, which omits
them from its output. The preprocessor permutes operator template paragraphs
to the beginnings of their sections, so that operators can be used before being
introduced in the typeset presentation. (This fails to allow an operator word
to be used in multiple operators.) It also moves all glyph directives to before
the operator templates. Cadiz checks the paragraphs in the resulting order, but
permutes them back into the original order for typesetting; file and line directives
are inserted by the preprocessor to enable this. Any file or line directives in the
preprocessor’s input are ignored. Quiet and reckless directives are recognised,
and these modes are recorded as attributes of paragraphs, so that the mode can
be set appropriately after permutation.

Acknowledgements

Sam Valentine advised on the use of Z in this specification.

	Introduction
	Specification
	Data types
	Environment
	Functions

	Further work

