section corelaws

/ Reference manual / Extended toolkit

1. Introduction

This section contains toolkit-independent general-purpose tactics, and toolkit-
independent laws, with (some of) their proofs.

section corelaws

2. Supplied Tactics for the CADiZ Theorem-prover

The following tactics are supplied as part of the CADIZ system. They are intended
to serve two purposes: a) to be directly useful in proof work; b) to be used as
models when users develop their own tactics.

The current version of this library should be regarded as provisional, since both
the rules of inference and the tactic language are still in the course of development.

The proof system manipulates sequents. Each sequent used in a proof becomes
a goal of the proof process, so in this document the words ”goal” and ”sequent”

will be used interchangably. Tactics can take several sorts of argument. In this
document we proceed "top-down”, considering first those tactics which operate
on goals, then those which operate on predicates, then those which operate on
expressions, and finally those for schema texts and declarations.

Although the tactics are here ordered on the basis of what sort of arguments they
have, they also fall fairly neatly into two categories which cut across that basis,
namely: a) non-recursive tactics which may fail; b) recursive tactics which are
intended never to fail, but which may cause ”Nothing changed” to be reported.

The former are: ”bindselAbsorb”, ”"unfoldRel”, "unfoldFun”, ” pairInFunction”
and ”proveWithInduction”.

The latter are "flattenGoal”, "separateGoals”, "flattenPred” and all the simpli-
fication tactics whose names begin with ”puff”.

The first tactics are those whose argument is a single goal.

The tactic "flattenGoal” is used to carry out all those eliminations on a single goal
which cause as many as possible of the predicates in the goal to become separate
antecedents or consequents, but without producing more than one subgoal.

The tactic takes a single argument, which must be a sequent, and which is bound
to the joker ”g”. The tactic is to be called recursively, and the label "repeat” is
declared as the recursion point. Then five alternative possibilities are considered,
namely: a) we have finished; b) we can do something with a consequent; ¢) we
can do something with an antecedent; d) we can do something with a declaration;
e) the case which is always true.

The first of these cases is where the "axiom” command succeeds. This would
otherwise be generated automatically, but in that case the ”axiom” node is always
displayed in the proof tree, even when ”apply tactic” is being used, and there
can be cases where the number of such nodes is embarrassingly high. Putting it
here means that the "axiom” command is treated like any other command in the
tactic.

In the next two of the five possibilities, the appropriate flattening action is carried
out and the recursion is taken.

In the fourth case, each declaration is selected for normalization, and if this
causes the "axiom” command to be offered, this is accepted and the whole tactic
will succeed. This will happen if the result of normalisation is to produce as
an antecedent a membership predicate which already occurs as a consequent.
The normalization is attempted twice because the two predicates generated as
antecedents may be different, one asserting a membership of the stated declarand
set, the other asserting membership of the carrier set concerned. If ”axiom” is
not offered, however, this alternative in which normalization was done will also
not succeed, so the result of the whole tactic will be obtained from alternatives
without the normalization.

In the final case the tactic stops with a success. Since alternations are tried in the
order they are written, the first complete tactic success will be one where either
the "axiom” command has been offered, and the goal proved, or all the possible
eliminations have been done, until finally a skip has been the only possibility left.
The exclamation mark for a ”curtail” is put in just to make sure that there is no
backtracking, although this will never be attempted if everything goes according

to plan. The tactic as a whole always succeeds. If it achieves nothing, ”Nothing
changed” will be reported.

flattenGoalgoalg | recrepeat o
I(“axiom” 0 V
(patgoalpredp ||_? pbe
I(“predication” p; repeat
matchp ::
| = _pred o
| _pred V _pred o
| _pred = _pred o
|V _stxt @ _pred o “climination” p ::
| false ® “thin” p ::
.5 repeat)) V
(patgoalpredp || p F7 e
I(“predication” p; repeat
matchp ::
| = _pred o
| _pred N _pred e
| 3 _stat @ _pred o “climination” p ::
| true ® “thin” p ::
. ; repeat)) V
(patgoq declvar | var =7 o
“normalization” var; “normalization” var; “axiom” 0) V
skip)

The tactic "separateGoals” takes a single argument, which must be a sequent, and
which is bound to the joker ”g”. The label "repeat” is declared as the recursion
point. First the tactic calls "flattenGoal”, then it carries out those eliminations
which produce more than one subgoal. Where that is successful, the recursive
call is made on both of the subgoals. ”separateGoals” can thus generate any
number of subgoals. The tactic always succeeds. If it achieves nothing, ”Nothing
changed” will be reported.

separateGoalsgoalg | recrepeat e
“apply tactic” 0 “flattenGoal”;
l((patgompredp || p F? o “elimination” p; (repeat || repeat)) V
(patyoapredp |7 p o “elimination” p; (repeat || repeat)) V
skip)

Next we come to tactics each of whose argument is a single predicate.

The tactic bindselAbsorb is a dedicated auxiliary tactic used by some of those
which follow. It assumes its predicate parameter is a conjunction of any number
of equalities, where the left-hand side of each equality is in the form of a selection
from a tuple, which may be absorbed. The purpose of the tactic is to carry out
all these absorptions.

bindselAbsorbpredp |
matchp
i exprel | el = _expr o “absorption” el
:: predpl, p2 | pl A\ p2 e
“apply tactic” pl “bindselAbsorb”; “apply tactic” p2 “bindselAbsorb”

The tactic "unfoldRel” is used to expand a predicate which expresses whether
some explicitly stated term or tuple of terms is a member of a named compre-
hension. The named comprehension is frequently a relational operator.

The name is assumed to have been declared as equal to a comprehension, whose
expression part is the tuple of the bound names of the comprehension. The name
of the comprehension is expanded to give the comprehension explicitly, and the
membership is also expanded. This yields an existential quantification, containing
an equality between the actual arguments to the comprehension and their formal
names in the comprehension. Expanding this gives us two separate equalities, and
the absorption step selects the first and second component, respectively, of the
pair formed by the two arguments. This then allows the one-pointing to remove
the bound variables of the quantification, and the final absorptions discard the
quantification itself and a true condition which gets generated. The alternative
skips at the end allow the tactic to succeed in certain cases where the assumptions
of use are not fully met.

unfoldRelpredp |
matchp :: exprr | _expr € T ®

“expansion” r :: . ; — — get the comprehension
“expansion” p; — — expand the membership
matchp :: predequ; exprel | 3_stxt @ equas(el = (_exprs)) o

matchel ::| (_exprs) o
“expansion” equ; “apply tactic” equ “bindselAbsorb” ::
| el ® “expansion” equ :: . ::| p ® skip :: . ;
“one-point” p; — — the bound variables
“absorption” p; — — the exists quantifier
I(“absorption” p V skip); — — the final true conjunct if any
matchp :: predside | side N\ _pred o
“apply tactic” side “puffPred” :: . ;
I(“absorption” p V skip) — —absorb the side — condition

The largest supplied tactics are the general-purpose simplifying procedures whose
names begin with "puff”. They make frequent recursive calls on themselves and
on each other. They are written without any assumption of the presence of toolkit
definitions. Within that constraint, their design aim is to apply all simplifications
which one would always want, except perhaps in very special circumstances, but
to do nothing else.

"puffPred” takes a single predicate argument, which may appear anywhere and
be of any form. The main section of the tactic has a matcher which fans out
into some eleven different cases, corresponding to the sort of predicate supplied.

For each of these any applicable immediate simplifications are sought, usually
after a recursive call to simplify the constituent elements. Finally, ”resolution”
and ”linear decision” are tried, using the result of the previous simplifications.
”puffPred” always succeeds. If it achieves nothing, the report ” Nothing changed”
is given.

puffPredpredp | recrepeat o
matchp ::
exprq,r | q=1
“apply tactic” q “puffExpr”; “apply tactic” r “puffExpr”;
I(“absorption” p V
matchp ::
| (Lezprs) = (Lexprs) @
“expansion” p; repeat ::
| | _decls) = (| _decls |) o
“expansion” p; repeat ::
| peskip:.):
exprq, T | g ET ®
“apply tactic” q “puffExpr”; “apply tactic” r “puffExpr”;
I(“absorption” p; repeat NV “expansion” p; repeat \V skip) ::
stxtdec; predprred
| Idec o prred o
| V dec o prred o
“apply tactic” dec “puffStat”;
“apply tactic” prred “puffPred”;
I(“absorption” p; repeat NV “one-point” p; repeat \V skip) ::
strtdec; predprred | 3, dec o prred o
“apply tactic” dec “puffStxt”;
“apply tactic” prred “puffPred”;
I(“absorption” p V. “one-point” p V “expansion” p); repeat ::
predg | -~ q e
“apply tactic” q “puffPred”; (“absorption” p V skip) ::
predq, T

|lqgNATe

| Ny . o

The tactic ”"flattenPred” is designed to bring an arbitrary predicate into what is
expected to be a more tractable form by systematically absorbing where possiible,
distributing quantifiers outwards and distributing negations inwards. It perform
approximately the same sorts of simplifications as ”"flattenGoal”. but all within
a single predicate, hence its name.

"flattenPred” always succeeds. If it achieves nothing, the report ” Nothing changed”

is given.

flattenPredpredp | recrepeat o

matchp ::

expre | e o

(“absorption” p; repeat N “predication” p; repeat \V skip) ::
predprred

| 3_stat e prred e

| V_stat @ prred o

| 3, _stzt @ prred o

“apply tactic” prred “flattenPred”;

I(“absorption” p; repeat V

“predication” p; repeat V

“normalization” p; repeat \V skip) ::

predg | - q e

“apply tactic” q “flattenPred”;

I(“absorption” p; repeat NV “predication” p; repeat V

“de Morgan” q; “absorption” p; repeat V skip) ::

predq,r | g N1 ®

“apply tactic” q “flattenPred”; “apply tactic” r “flattenPred”;
I(“absorption” p; repeat NV “predication” p; repeat V
matchq ::| 3_stzt @ _pred o

“distribution” q; repeat :: .V

matchr ::| 3 _stzt @ _pred o

“distribution” r; repeat :: .V skip) ::

predq, T | gV T e

“apply tactic” q “flattenPred”; “apply tactic” r “flattenPred”;
I(“absorption” p; repeat NV “predication” p; repeat V
matchq ::| V _stzt @ _pred o

Next we have two tactics each of which takes two predicate arguments.

The tactic ”pairInFunction” is designed to show that an inspected predicate, p,
of the form (a,fa) € f is true, using a crossed antecedent, ante, of the form
forallb : s @ 3, p: f @ p.1 =0b and where we assume that the condition a € s is
axiomatic or becomes so by absorption.

pairInFunctionpredante, p |

matchp :: expra, f, fa | (a,fa) € f o

“expansion” fa; “mu tac” fa :: . ;

((

pateonspredex | 1 e

matchez :: declsz1; expral, fal, f1 |

3,21 | (al, fal) € f1 ® truec e

“‘quantification tac” “{1}” al ante;

matchante :: predantel, ante2 | antel A ante2 o
“elimination” ante; “one-point” ante2; “absorption” ante2;
matchante ::

predante2l, ante22 | ante21l = ante22 o

“apply tactic” ante2l “puffPred” ::

| ante2 o skip :: . ;

I(“absorption” ante2 V skip);

“expansion” ante2;

matchante2 ::

declppr; predant22, ant221; exprpr, val;
predant222; strtant2221; expra2, b2, c¢2,d2 |
dppr e

(ant22as(ant221aspr.1 = val)

A ant222as(V ant2221 e a2 = b2 = c2 = d2)) e
“elimination” ante2;

“elimination” ant22;

“Leibniz” al b2 ant221;

“expansion” ex;

“‘quantification tac” “{1}” (pr++ “2”) ex;
matchez :: predezl, ex2 | exl V ex2 o

14

PR BOSSRSS SR> Y USSR 15> SN 5 P 7N AR SR> R S T

The tactic ”proveWithInduction” is designed to do the right call of quantification
on a (crossed) induction principle, ind, given an (inspected) target predicate, targ,
which takes the form of a universal quantification which the induction principle
can prove; then to prove and eliminate the predicate corresponding to the fact
that this is what we have done.

prove WithInductionpredind, targ |

matchtarg ::

declss; predpl,p2 |Vs|plep2e

“quantification tac” “{1}”

({7 ++s++ “—("++pl++) = ("++p2++ 9} 7)ind;
matchind :: predil, i2 | i1 A i2 o “elimination” ind;
“one-point” 12; “absorption” i2;

matchi2 :: predjl,j2 | j1 = j2 @

“elimination” i2;

(skip || skip)

Next we come to tactics each of whose argument is a single expression.

The tactic "unfoldFun” takes a single argument, which is an application expres-
sion. The tactic is designed to expand the application of the function to its
argument or arguments. The function is assumed to have been declared as equal
to a suitable set, typically a lambda-expression.

The initial expansion of the function application creates a mu-expression, which
the tactic then attempts to simplify. It separates out the bound variables which
are equated to the arguments, so that ”one-point” can then carry the substitution
through.

In the simple cases, the condition part of the mu-expression will be true. If the
function is not recognised as being total, however, this will not be so. In that
case, the final ”absorption” will not succeed, and the skip is taken instead. The
user must then reduce that predicate by other means, in order to absorb it away.

unfoldFunexpre |
“expansion” e; — — generate the mu — expression
matche :: predprred; exprop |
w_decl | prredas(_expr € op) e _expr e

“expansion” op; — — get the function
“expansion” prred; — — expand the membership of lambda
matchprred :: predequ | 3 _stzt @ equ o
“expansion” equ; — — the two pairs
matchequ :: predp; expra, c |
(pasa = _expr) A\ ¢ = _expr e
“absorption” a c; — — tuple selection, separating args from results

matchp :: exprel | (el = (_exprs)) o
matchel ::| (_exprs) o
“expansion” p; “apply tactic” p “bindselAbsord” ::

| el @ “expansion” p ::.::| p e skip ...
“one-point” prred; — — within exists
“absorption” prred :: . ; — — drop exists quantifier
“one-point” e; — — the mu — expression

matche :: predside | u | side ® _expr e
“apply tactic” side “puffPred” :: . ;
I(“absorption” e \V skip) — —the mu if possible

"puffExpr” is the expression counterpart of "puffPred”. It takes a single ex-
pression argument, which may appear anywhere and be of any form. The main
section of the tactic has a matcher which fans out into over twenty different cases,

corresponding to the sort of expression supplied. For each of these any applicable
immediate simplifications are sought, usually after a recursive call to simplify the
constituent elements. ”puffExpr” always succeeds. If it achieves nothing, the
report ”Nothing changed” is given.

puffExprezprt | recrepeat ® matcht ::
| 0_expr o “expansion” t ::
exprp | p.1 e
|p2e
“apply tactic” p “puffExpr”; \(“absorption” t \/ skip) ::
exprses | (es) ® “apply tactic” es “puffExprs” :
declsds | (| ds) e “apply tactic” ds “puffConstDecls” ::
expre | P e o “apply tactic” e “puffExpr” :
eTprp, 4 | p X q e
“apply tactic” p “puffExpr”; “apply tactic” q “puffEzpr” :
predp; exprq,r | if pthen gelser o
“apply tactic” p “puffPred”;
(“absorption” t; repeat V
“apply tactic” q “puffExpr”; “apply tactic” r “puffExpr”;
(“absorption” t \V skip)) ::
stats; expret | {s e ct} e
| Asecte
“apply tactic” s “puffStat”;
“apply tactic” ct “puffExpr”;
I(“absorption” t V “one-point” t; repeat \/ skip) ::
stats; expret | s e ct e
|lets e cte
“apply tactic” s “puffStat”;
“apply tactic” ct “puffExpr”;
I(“absorption” t; repeat V' “one-point” t; repeat \ skip) ::
exprfun, args | fun args e
I(“evaluation” t vV
“apply tactic” fun “puffExpr”;

V([¢ .. = 99 4

puffExprsexprsts | matchts :: expre; exprses | e, es ®
“apply tactic” e “puffExpr”,
“apply tactic” es “puffExprs” :| ts o skip :: .

puffStatstrts |
matchs
:: declsds | ds | _pred
“apply tactic” ds s “puffDecls”;
matchs :: predbarpart2 | _decls | barpart2 e
“apply tactic” barpart2 “puffPred”

puffDeclsdeclsds; stxts |
matchds
i decld; declsds2 | d; ds2 e
matchd
;o expre | _name : e ®
“apply tactic” e “puffExpr”
; matche
::| {_stzt ® _expr} o “normalization” d
2| {_exprs} o “normalization” d

2| e o skip
i expre | —name == e ® “apply tactic” e “puffExpr”
expre | e o

“apply tactic” e “puffExpr”;

I(“distribution” d v skip)
matchds

i decldd; declsdds2 | dd; dds2 e

“apply tactic” dds2 s “puffDecls”

::|® skip

puffConstDeclsdeclsds |

matchds
i expre; declsds2 | _name == e; ds2 e
“apply tactic” e “puffExpr”; “apply tactic” ds2 “puffConstDecls”

::|® skip

3. Commutation Laws

3.1. Description

We begin with equality, then go on with the rules of commutation of predicates
which we can represent using empty schemas as predicates.

3.2. Laws

coml ==
[(X]F? Vi,u: Xet=usu=t
Proved by a single call of ”puffPred” on the consequent. com2 ==

F? Vp,q:PlepAgeqgAip

com3 ==

F? Vp,q:PlepVgeqVp
comd ==

=7 Vp,q:Ple(p<q) & (¢ p)

The above three laws can be proved by a single call of ”commutation” on one of
the arguments to the "iff”, followed by a single call of ”puffPred” on the whole
consequent.

4. Absorption Laws

4.1. Description

We begin with true and false, then go on with the rules of absorption of predicates
which we can represent using empty schemas as predicates.

All the following laws can be proved by a single call of ”puffPred” on the con-
sequent.

4.2. Laws

absl ==

7 = false < true

abs2 ==

=7 = true < false
abs3 ==

F? Vp:Ple—-—-p<ep
absAndl ==

F? Vp: P[] e p A false < false

absAnd2 ==

F? Vp: P[] e false A p < false
absAnd3 ==

F? Vp:P[lep A—p<s false
absAnd4 ==

F? Vp:P[le—pAp<s false
absAndb ==

F? Vp :P[l ep A true < p
absAnd6 ==

F? Vp :PlletrueNp<p

absAnd7 ==
F? Vp:
absOrl ==
F? Vp:
absOr2 ==
F? Vp:
absOr3 ==
F? Vp:
absOrd ==
F? Vp
absOr5 ==
F? Vp:
absOr6 ==
F? Vp:
absOr7 ==
F? Vp:

PlepApsp

P[] @ p V true & true

P[] true V p < true

PlepV —p< true

:P[le—pVpe true

P[] e p V false < p

P[] @ false V p < p

PlepVpep

absImpliesl ==

F? Vp: P[] e false = p & true
absImplies2 ==

F? Vp: P[] @ p= true < true
absImplies3 ==

F? Vp:P[l e p = p< true
absImpliesd ==

F? Vp P[] etrue=p<p
absImpliesb ==

F? Vp P[] ep=false & —p
absImplies6 ==

F? Vp:Plep=-p&s-p
absIffl ==

F? Vp:P[|e(p < p) e true
abslff2 ==

F? Vp:P]e(p<e —p) < false

abslff3 ==

F? Vp:P]e(=p<p) s false
absIff4 ==

F? Vp:P[] e (true < p) & p
absIfth ==

F? Vp:P[]e(p < true) & p

absIff6 ==
F? Vp: P[] e (false = p) < —p
absIff7 ==

F? Vp:P|e(p< false) < —p

5. Theorems about the Natural Numbers

We could here state and prove various theorems about N, both because of their
usefulness, and to assist in proving the consistency of the definitions given later
in numdefs.

The theorems would mainly be to the effect that N is an Abelian monoid under
+.

zeroPlusBEqB ==
F?Vb:NeO+b=1b

Proved by induction on b succAPlusB ==
F? Va,b:Ne(a+1)+b=(a+b)+1

Proved similarly using induction on b PlusCommutes ==
F? Va,b:Nea+b=0b+a

Proved by induction on a using the previous two results as lemmas PlusClosed

F? Va,b:Nea+beN
PlusAssociates ==

F? Va,b,c:Ne(a+b)+c=a+ (b+c)
PlusConstInjective ==

F? Ya,b,c:N|ja+c=b+cea=10

IT 22-Jan-2002

	Introduction
	Supplied Tactics for the CADiZ Theorem-prover
	Commutation Laws
	Description
	Laws

	Absorption Laws
	Description
	Laws

	Theorems about the Natural Numbers

