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section relation toolkit
/Reference manual/Standard toolkit

1. More notations for relations

section relation toolkit parents set toolkit

1.1. First component projection

[X ,Y ]
first : X × Y → X

∀ x : X ; y : Y • first (x , y) = x

For any ordered pair (x , y), first (x , y) is the x component of the pair.

1.2. Second component projection

[X ,Y ]
second : X × Y → Y

∀ x : X ; y : Y • second (x , y) = y



Page 2 of 9

J I

Go Back

Full Screen

Close

Quit

For any ordered pair (x , y), second (x , y) is the y component of the pair.

1.3. Maplet

function 10 leftassoc( 7→ )

[X ,Y ]
7→ : X × Y → X × Y

∀ x : X ; y : Y • x 7→ y = (x , y)

The maplet forms an ordered pair from two values; x 7→ y is just another notation
for (x , y).

1.4. Domain

[X ,Y ]
dom : (X ↔ Y )→ PX

∀ r : X ↔ Y • dom r = { p : r • p.1 }

The domain of a relation r is the set of first components of the ordered pairs in
r .
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1.5. Range

[X ,Y ]
ran : (X ↔ Y )→ PY

∀ r : X ↔ Y • ran r = { p : r • p.2 }

The range of a relation r is the set of second components of the ordered pairs in
r .

1.6. Identity relation

generic(id )

id X == { x : X • x 7→ x }

The identity relation on a set X is the relation that relates every member of X
to itself.

1.7. Relational composition

function 40 leftassoc( o
9 )
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[X ,Y ,Z ]
o
9 : (X ↔ Y )× (Y ↔ Z )→ (X ↔ Z )

∀ r : X ↔ Y ; s : Y ↔ Z • r o
9 s = { p : r ; q : s | p.2 = q .1 • p.1 7→ q .2 }

The relational composition of a relation r : X ↔ Y and s : Y ↔ Z is a relation
of type X ↔ Z formed by taking all the pairs p of r and q of s , where the
second component of p is equal to the first component of q , and relating the first
component of p with the second component of q .

1.8. Functional composition

function 40 leftassoc( ◦ )

[X ,Y ,Z ]
◦ : (Y ↔ Z )× (X ↔ Y )→ (X ↔ Z )

∀ r : X ↔ Y ; s : Y ↔ Z • s ◦ r = r o
9 s

The functional composition of s and r is the same as the relational composition
of r and s .

1.9. Domain restriction

function 65 rightassoc( C )
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[X ,Y ]
C : PX × (X ↔ Y )→ (X ↔ Y )

∀ a : PX ; r : X ↔ Y • a C r = { p : r | p.1 ∈ a }

The domain restriction of a relation r : X ↔ Y by a set a : PX is the set of
pairs in r whose first components are in a.

1.10. Range restriction

function 60 leftassoc( B )

[X ,Y ]
B : (X ↔ Y )× PY → (X ↔ Y )

∀ r : X ↔ Y ; b : PY • r B b = { p : r | p.2 ∈ b }

The range restriction of a relation r : X ↔ Y by a set b : PY is the set of pairs
in r whose second components are in b.

1.11. Domain subtraction

function 65 rightassoc( −C )
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[X ,Y ]
−C : PX × (X ↔ Y )→ (X ↔ Y )

∀ a : PX ; r : X ↔ Y • a −C r = { p : r | p.1 6∈ a }

The domain subtraction of a relation r : X ↔ Y by a set a : PX is the set of
pairs in r whose first components are not in a.

1.12. Range subtraction

function 60 leftassoc( −B )

[X ,Y ]
−B : (X ↔ Y )× PY → (X ↔ Y )

∀ r : X ↔ Y ; b : PY • r −B b = { p : r | p.2 6∈ b }

The range subtraction of a relation r : X ↔ Y by a set b : PY is the set of pairs
in r whose second components are not in b.

1.13. Relational inversion

function( ∼)
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[X ,Y ]
∼ : (X ↔ Y )→ (Y ↔ X )

∀ r : X ↔ Y • r∼ = { p : r • p.2 7→ p.1 }

The inverse of a relation is the relation obtained by reversing every ordered pair
in the relation.

1.14. Relational image

function( (| |))

[X ,Y ]
(| |) : (X ↔ Y )× PX → PY

∀ r : X ↔ Y ; a : PX • r(| a |) = { p : r | p.1 ∈ a • p.2 }

The relational image of a set a : PX through a relation r : X ↔ Y is the set of
values of type Y that are related under r to a value in a.

1.15. Overriding

function 50 leftassoc( ⊕ )
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[X ,Y ]
⊕ : (X ↔ Y )× (X ↔ Y )→ (X ↔ Y )

∀ r , s : X ↔ Y • r ⊕ s = ((dom s)−C r) ∪ s

If r and s are both relations between X and Y , the overriding of r by s is the
whole of s together with those members of r that have no first components that
are in the domain of s .

1.16. Transitive closure

function( +)

[X ]
+ : (X ↔ X )→ (X ↔ X )

∀ r : X ↔ X • r+ =
⋂
{ s : X ↔ X | r ⊆ s ∧ r o

9 s ⊆ s }

The transitive closure of a relation r : X ↔ X is the smallest set that contains r
and is closed under the action of composing r with its members.

1.17. Reflexive transitive closure

function( ∗)
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[X ]
∗ : (X ↔ X )→ (X ↔ X )

∀ r : X ↔ X • r ∗ = r+ ∪ id X

The reflexive transitive closure of a relation r : X ↔ X is the relation formed by
extending the transitive closure of r by the identity relation on X .
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