
Page 1 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

ISO Standard Z
/What is CADiZ?

This section of the CADiZ manual compares the notation of ISO Standard Z with
that of Spivey’s Z Reference Manual, 2nd edition (referred to below as ZRM). It
is derived from a paper presented at ZUM98.

1. Contents of this page

• Background

• Improvements

– Sections

– Mutually recursive free types

– Operator templates

– Conjectures

– Binding extensions and tuple selections

– Schemas as expressions

– Empty schemas

– Local constant declarations

– Axiom-parts as predicates

Page 2 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

– Soft newlines

– Toolkit

• Incompatibilities

– Singleton sets

– Schema definition symbol

– Decorated references to schemas

– Decorated references to generic schemas

– let on predicates

– Renaming

– Underlined infix relations

– Operator precedences

– Semicolon between predicates

– Theta expressions

– Defunct toolkit operations

– Lexis of words

• Subtle changes

– Quantified expressions

– Preconditions

– Schema instantiation

Page 3 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

– Precedence of lambda and mu

• Conclusions

2. Background

This paper compares the notation of the final Committee Draft (CD) of the ISO
standard Z Notation with that of Spivey’s The Z Notation: A Reference Manual.
The standard is referred to below as the final CD and as ISO Standard Z; Spivey’s
book is referred to below as ZRM.

ZRM was a huge step forward at the time of its first publication. Many syntax
and typechecking tools for Z have been based on it, and it has become a de facto
standard. It is an excellent work that has certainly served the Z community well,
but it is not perfect, there being several issues that it did not adequately address.
Such inadequacies are inevitably resolved by different users in different ways,
until a standard is again agreed. An aim of the final CD is to provide adequate
resolutions of the problems, so that diverse dialects can be avoided.

3. Improvements

This section presents improvements in ISO Standard Z that address inadequacies
in ZRM.

Page 4 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

3.1. Sections

Specifications are rarely written in terms of the Z core language. Even pedago-
gic examples usually refer to the definitions of the mathematical toolkit. Real
specifications are constructed from libraries or toolkits of operations relevant to
particular application domains. It should be possible to reuse toolkits by refer-
ence, without having to duplicate them into every specification that uses them.
This is an issue that ZRM ignores.

ISO Standard Z provides probably the simplest possible solution to the toolkit
reuse problem, in the form of its section notation. A Z section contains a sequence
of paragraphs, just like a ZRM specification. It also has a header which gives
this section its name and lists the names of those other sections that are parents
of this one.

section myspec parents toolkit

Such a section, in combination with its ancestor sections, is what comprises a
specification in ISO Standard Z. At any point in a specification, the environment
of global declarations comprises those already declared in the current section and
all declarations of all sections named as parents of the current one. For example,
consider a specification comprising four sections from which just the headers are
as follows.

section A

section B parents A

Page 5 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

section C parents A

section D parents B, C

The parents relation can be depicted as a directed acyclic graph. (Arrowheads
needed!)

A

/ \

/ \

B C

\ /

\ /

D

Within sections B and C, the declarations of section A may be used. Within
section D, the declarations of sections A, B and C may be used.

Global redeclaration is not permitted, either within a section or across related
sections. Unlike other proposals for module-like facilities, a section cannot hide
any of its paragraphs—it is not an encapsulation mechanism. For backwards
compatibility, a single sequence of paragraphs with no section header is accepted
as a single section with toolkit as its sole parent.

The final CD gives the semantics of sections. The mechanics of exactly how
parents are brought together is left to the builders of tools, an obvious possibility
being to use a mapping between section names and file names.

Page 6 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

3.2. Mutually recursive free types

ZRM presents a free type as an abbreviation for a given type followed by axiomatic
constraints to ensure that its constants are elements of the given type, that
its constructors are injections producing members of the given type, that the
elements and the values returned by the injections are all distinct from each other,
and that all values of the type are either elements or returned by an injection.
Unfortunately, it does not consider mutually-recursive free types.

ISO Standard Z permits mutually-recursive free types to be written, separated
by & symbols within a single paragraph. Mutually-recursive free types are espe-
cially useful in describing the syntax of languages, as illustrated by the following
fragment.

dec ::= Dec〈〈name × exp〉〉
&
exp ::= Let〈〈seqdec × exp〉〉
| Num〈〈N〉〉

In this example, a declaration dec involves an expression exp, and an exp can
involve local declarations. A larger example would be mutual recursion between
predicates and expressions in Z.

The final CD presents a transformation of mutually-recursive free types to given
types and axiomatic constraints. Its definition of the membership, totality, in-
jectivity and disjointness axioms follow the same pattern as before, the only
change being in the induction axiom which involves all of the mutually-recursive

Page 7 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

types simultaneously.

3.3. Operator templates

An operator is a name with special lexical status, for example an infix operator
appears between its operands. ZRM notation allows the use of various operators.
A use of an operator has to be preceded by its definition. Its definition ought to
be preceded by an introduction of a template for the operator, to indicate that
the name will be defined and used in, for example, infix position. Without the
information provided by the template, it is not possible to parse the operator’s
definition and uses. Although ZRM says what form of templates it permits oper-
ators to have, no notation is specified for the introduction of operator templates.
It presumes that all the operators defined in its toolkit are already known to the
reader and hence recognisable, and leaves each tool to implement its own distinct
notation for templates.

ISO Standard Z has a notation called an operator template paragraph that serves
to introduce new operators. Here are some examples from the toolkit.

relation (6=)
function 30 leftassoc (∪)
generic 5 rightassoc (<)
function 90 (∼)
relation (disjoint)

Each of these lines begins with an operator’s category and ends with a paren-

Page 8 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

thesized pattern. In between, as appropriate for the operator, is precedence and
associativity information. An operator’s category determines how applications
of the operator are parsed: an application of a relation operator is parsed as a
relational predicate; an application of a function operator is parsed as an ap-
plication expression; an application of a generic operator is parsed as a generic
instantiation expression. When applications of operators are nested, so that one
operator application appears as an operand in another operator application, the
intended nesting can be made explicit using parentheses. Alternatively, if no par-
entheses are used, the precedence and associativity information determines how
the applications are nested.

ISO Standard Z notation permits a wider variety of operators to be introduced
than ZRM notation. The following table summarises what is permitted.

ZRM ISO Standard Z
Category relation, function, generic relation, function, generic

Precedence infix functions 1..6, others fixed by syntax functions and generics 0..9999
Associativity left or right , fixed by syntax left or right , user -defined

Arity 1..2 1..n, operands and symbols alternate

The generalization of the available precedences and associativities has led to some
backwards incompatibilities, as listed below. The generalization to arbitrary arity
is subject to the restriction that operands and symbols must alternate, meaning
that two operands cannot be consecutive without an intervening symbol, and
two symbols cannot be consecutive without an intervening operand. An example
of the latter restriction would be the consecutive symbols else if (within the
obvious operator), whereas writing them as a single symbol elsif would be per-

Page 9 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

mitted. ZRM is more restrictive than suggested by the above table: relations and
generics cannot be postfix, functions cannot be declared to be prefix (they just
are by default), and there are no nofix operators. ISO Standard Z permits more
than suggested by the table: it permits sequence arguments distinct from normal
value arguments, as in the following examples of sequence extension brackets and
bag extension brackets.

function (〈 , , 〉)
function ([[, ,]])

ISO Standard Z defines relational image brackets and sequence brackets in the
toolkit, whereas ZRM had to make special cases for them in the core syntax (page
145).

Chaining of relations in ISO Standard Z is exactly as permitted by ZRM, i.e.
only infix binary relations may be chained; a chain may not commence with a
prefix relation, nor end with a postfix relation, nor can tertiary or higher relations
appear in a chain.

Having introduced the template of an operator, the notation for defining and
using an operator is essentially the same as in ZRM. The definition has as its
left-hand side the pattern without the parentheses. Applications of an operator
are written with expressions in place of operand markers, and comma-separated
lists of zero-or-more expressions in place of , , operand markers. References to
an operator without applying it to any arguments are written as the pattern
enclosed in parentheses.

Page 10 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

3.4. Conjectures

ZRM presents many laws, but without formalising their syntax as part of Z. Their
presentation is pseudo-formal, none of their variables being declared. Proof tools
typically provide a common syntax of sequents, suitable for expressing not only
laws, but also conjectures, theorems, goals, lemmas and axioms. Of these, con-
jectures are the starting point for proofs, and are sometimes hand-written within
specifications. Unfortunately, different proof tools use different syntaxes for se-
quents, so it is not appropriate to standardize their syntax. However, standardiz-
ing a simpler syntax specifically for conjectures is possible and worthwhile, as this
allows them to be written within specifications in a form that potentially eases
their interchange between tools and allows them to be subjected to typechecking.

ISO Standard Z’s notation for a (generic) conjecture involves a `? symbol fol-
lowed by a single predicate. The following examples formalize a couple of laws
from ZRM.

`? ∀ a : Z • a..a = {a}

[X] `? ∀ x , y : X • x 6= y ⇒ y 6= x

This simple syntax is chosen as it is likely to conform to the syntax of a sequent,
or at least be translatable to a sequent, whatever proof tool is used. A con-
jecture is valid if its predicate can be shown to be implied by the properties of
the specification, without itself contributing to those properties. The following
conjecture is an example of an invalid one, but the specification of which it is a

Page 11 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

part remains well-formed nevertheless.

`? 42 ∈ {1, 2, 3}

3.5. Binding extensions and tuple selections

The Z core language provides both labelled and unlabelled product types, called
schema types and Cartesian product types respectively. One would expect to
find notations for construction and selection operations on values of each of these
types, but ZRM offers only a selection operation for values of schema type, and
only a construction operation for values of Cartesian product type. ISO Stand-
ard Z also offers notations for the other two operations. The following table
summarises the notations.

ZRM ISO Standard Z
Constructors Selectors Constructors Selectors

Tuples (x , y , z) (x , y , z) triple.3
Bindings binding .name 〈| x == 1, y == 42 |〉 binding .name

ZRM introduces a notation for explaining bindings (ZRM pages 26 and 62), but
does not permit use of this as Z notation. ZRM notation is used largely for
producing abstract specifications of systems, where the emphasis is on the use
of schemas and constraints on them rather than particular bindings, those being
more specific and concrete. However, Z can be used in other ways and in other
contexts, for example, the author has used it in reasoning about a relational data-
base, where the rows of a table were modelled by the bindings of a schema. ISO
Standard Z’s notation for the construction of bindings from explicit component

Page 12 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

values is called a binding extension expression. The syntax of a binding extension
expression conforms to the template

〈| i1 == e1, ..., in == en |〉

where the subscripts distinguish different names i and their associated expressions
e, and n ≥ 0. Bindings can arise in ZRM either by theta expressions or as
members of schemas. It is particularly useful to have binding extension notation
during proofs, where showing the truth of predicates such as θS = θS ′ involves
consideration of the underlying binding values. An example of such a proof
appears in the next subsection.

ISO Standard Z’s notation for the selection of components from tuples is called
a tuple selection expression. The syntax of a tuple selection expression conforms
to the template

e.b

where the expression e denotes a tuple and b is a base ten number literal in
the range of the arity of the tuple; the components are numbered from 1. These
conditions are verifiable by typechecking. ZRM notation provides first and second
selectors for pairs in the toolkit, but no selectors for larger tuples. ISO Standard
Z retains first and second in the toolkit for backwards compatibility.

Page 13 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

3.6. Schemas as expressions

An expression has a value of a particular type. A schema has a value—it is a
set of bindings—but in ZRM the syntax does not permit a schema to be written
as an expression. Instead, ZRM has a separate category of schema expressions,
and any expression involving a schema must refer to a separately defined named
schema. This distinction between schema expressions and other expressions also
prohibits an expression whose type is that of a set of bindings from being used
within a schema expression.

This syntactic restriction is an obstacle to formal reasoning. The replacement
of a name by its defining expression is a typical substitution-of-equals-for-equals
logical inference, but that is precluded by the syntactic restriction. Without that
particular inference rule, it is not clear how to replace a reference to a schema by
the mathematics of its definition, and hence to reason further. More generally,
all formulae arising from logical inferences should be expressible in the concrete
syntax, and so irregularities in the concrete syntax should be eradicated.

ISO Standard Z has merged the syntactic category of schema expressions into that
of expressions. So an arbitrary schema expression may appear as an inclusion
declaration, a predicate, an operand to θ, or as an expression, i.e. wherever a
schema reference could appear in ZRM notation. The type system ensures that a
schema is used only where an expression whose type is that of a set of bindings is
permissible, and that only an expression whose type is that of a set of bindings is
used where a schema is required. This change to the syntax is the major cause of
the backwards incompatibilities listed below. The following example illustrates
use of schema expressions as inclusion declarations and as operands to θ.

Page 14 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

S
x : Z
y : N

∆Sx
S ; (S)′

θ(S \ (x)) = θ(S \ (x))′

The ∆Sx schema can be interpreted as defining a change to the state represented
by schema S in which only the x component’s value can change. The conjecture
that the value of component y is left unchanged by ∆Sx can now be stated and
proved, in which can be seen schema expressions being used as predicates.

`? ∀ S ; (S)′ • ∆Sx ⇒ y = y ′

Expansion of ∆Sx

`? ∀ S ; (S)′ • [S ; (S)′ | θ(S \ (x)) = θ(S \ (x))′]⇒ y = y ′

Expansion of thetas

`? ∀ S ; (S)′ • [S ; (S)′ | 〈| y == y |〉 = 〈| y == y ′ |〉]⇒ y = y ′

Page 15 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

Absorption of binding extensions

`? ∀ S ; (S)′ • [S ; (S)′ | y = y ′]⇒ y = y ′

Absorption of schema predicate

`? ∀ S ; (S)′ • y = y ′ ⇒ y = y ′

Absorption of implication

`? ∀ S ; (S)′ • true

Absorption of universal quantification

`? true

3.7. Empty schemas

An empty schema is a schema with no declarations. One can arise in ZRM
notation via the hiding of all declarations from a schema.

Schema =̂ [x , y : Z | x 6= y] \ (x , y)

This should simplify to the following equivalent paragraph, but ZRM does not
permit this to be written.

Schema =̂ [| ∃ x , y : Z • x 6= y]

Page 16 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

ISO Standard Z does permit the list of declarations in a schema text to be empty.
Empty schemas are surprisingly useful. If the type of S is that of an empty
schema, then S must have one of only two possible values, according to whether
the constraint in the schema is true or false.

S ∈ P[]⇒ S = [| true] ∨ S = [| false]

A use of this schema S as a predicate is equivalent to θS ∈ S . In the following,
the truth of this predicate is investigated for the two values of S . Here, the ≡
symbol is used to denote an equivalence transformation.

θ[| true] ∈ [| true]
≡ θ[| true] ∈ {〈||〉}
≡ 〈||〉 ∈ {〈||〉}
≡ true

θ[| false] ∈ [| false]
≡ θ[| false] ∈ {}
≡ 〈||〉 ∈ {}
≡ false

The type of an empty schema can be seen from the above to be isomorphic to
the Booleans. The following definitions would thus make sense, though they do
not appear within ISO Standard Z’s toolkit.

False == [| false]
True == [| true]
Boolean == {False,True}

Page 17 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

Z has never provided a Boolean type because when writing abstract specifications
it is bad style: it is better to use relations and test for membership of those
relations. However, Z can also be used in other circumstances. For example, the
author was once involved in a project that involved translation of another notation
to Z, where that other notation did not share Z’s syntactic distinction between
predicates and expressions. Wherever a predicate p was used as a Boolean-
valued expression, empty schemas enabled the straightforward translation to [| p].
Another example is refinement toward code, where the code will use a Boolean
data type. The definition of Boolean given above is superior to the occasionally
used free type Boolean ::= False | True because the definition as schemas allows
use as predicates.

To summarise: ISO Standard Z adds notation for empty schemas; Booleans are
rarely appropriate for use in abstract specifications and are not defined by ISO
Standard Z, but if needed, the definition given above is recommended.

3.8. Local constant declarations

ZRM’s restriction on the use of == notation to the global level is an unnecessary
irregularity. ISO Standard Z has removed this restriction, allowing use of == in
schema texts. A declaration i == e is equivalent to the declaration i : {e}.

If all declarations in a schema text are of the == form, then unique satisfiab-
ility is immediately guaranteed. When used in quantified predicates or definite
description (or let) expressions, this provides a neat notation for expressing sub-

Page 18 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

stitutions.

∃ x == 42; y == 1998 • p
µ x == 42; y == 1998 • e
let x == 42; y == 1998 • e

This generalization makes let notation redundant, but it is retained for back-
wards compatibility with ZRM (though only the expression form is retained, as
explained below).

3.9. Axiom-parts as predicates

ZRM permits newline between outermost conjuncts in an Axiom-part. ISO
Standard Z removes the unnecessary irregularity that distinguishes Axiom-parts
from other predicates by permitting newline between any predicates to mean con-
junction, and giving newline a very low precedence, so that any such new uses of
newline must be parenthesized.

3.10. Soft newlines

Newlines serve two different purposes in Z: so-called hard newlines separate de-
clarations and conjuncts; so-called soft newlines merely break up long formulae
onto multiple lines without themselves having any semantic significance. In ZRM
notation, newlines are soft if they are adjacent to an infix operator. In ISO Stand-
ard Z, newlines are also soft if they follow a prefix operator or precede a postfix

Page 19 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

operator. This improvement recognises the other circumstances where the next
line must contain a continuation of the same formula.

3.11. Toolkit

The major inadequacy in ZRM’s toolkit is the omission of a definition of the
numeric operations. This omission is resolved in ISO Standard Z as follows.
The integers Z have been replaced as the basis for numeric operations by the
set arithmos A denoting an unrestricted concept of number. A is introduced in
the prelude section, where it provides a basis for the semantics of natural number
literals in the Z core language. Other kinds of numbers can be defined as members
of A, such as reals and rationals, but those are not included in the ISO Standard
toolkit.

With the introduction of the sections notation, any misconception that the math-
ematical toolkit is the only toolkit can be readily dismissed. Moreover, the in-
formal section structure of ZRM’s toolkit is reflected in formal sections within ISO
Standard Z’s toolkit, namely set toolkit , number toolkit , and sequence toolkit ,
with standard toolkit being a section that has those three as parents without
contributing any additional operations.

section standard toolkit parents set toolkit , number toolkit , sequence toolkit

The absence of a section of bag operations within standard toolkit arises from
a reassessment of which operations have been frequently reused and therefore

Page 20 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

deserve to be in standard toolkit . The operations dealing with finiteness have
been redefined so that they do not refer to numbers, thus allowing set toolkit
and number toolkit to be cited individually when the whole standard toolkit is
not needed.

4. Incompatibilities

This section lists backwards incompatibilities between ZRM and ISO Standard
Z arising from the improvements discussed in the previous section. For each
incompatibility is given an explanation of what it is, a rationale for why it exists,
and some notes on how instances of it can be detected and rectified.

4.1. Singleton sets

4.1.0.1. What? The notation {i} where i is the name of a schema is parsed
differently: ISO Standard Z parses it as a singleton set extension, whereas ZRM
parses it as a set comprehension. (In ZRM, the set extension (set display) con-
taining a single schema reference is written {(i)}.)

4.1.0.2. Why? ISO Standard Z permits any schema-valued expression to be
written wherever ZRM permits only a schema reference, so the potential ambi-
guity between singleton set extensions and set comprehensions is broadened to

Page 21 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

expressions matching the pattern {e}. Since e can contain parentheses, the am-
biguity cannot be resolved in the way ZRM resolves it. (Where e is not a schema
name, both parse {e} as a set extension.)

4.1.0.3. How? The type of the ZRM set comprehension {i} is that of a set
of bindings, whereas the type of the ISO Standard Z set extension {i} is that of
a set of sets of bindings, so a typechecking tool will detect and report instances
of this incompatibility. The ISO Standard Z coercion to a set comprehension is
to write {i | true}.

4.2. Schema definition symbol

4.2.0.4. What? The =̂ symbol is not recognised in ISO Standard Z.

4.2.0.5. Why? Schema definitions and abbreviation definitions have been uni-
fied, and the separate name-spaces for schema names and variable names have
been merged, hence only one of the == and =̂ symbols is needed. The current
syntax retains ==, making =̂ obsolete.

4.2.0.6. How? As =̂ is not used in ISO Standard Z, all cases will be reported
by a syntax checking tool. Each must be replaced by ==.

Page 22 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

4.3. Decorated references to schemas

4.3.0.7. What? Any decoration on a reference to a schema must be separated
from the schema name.

4.3.0.8. Why? The merging of schemas and expressions has included the mer-
ging of the name-spaces of schema names and other names, so a schema can now
be defined with a decoration within its name. For each expression comprising a
name with a decoration, there are two possible intentions and hence interpret-
ations: either the name refers to a schema declaration in the environment and
the decoration is to be applied to the components of that schema, or the decor-
ated name refers to a schema declaration in the environment whose name is itself
decorated. ISO Standard Z must be able to express either intention, whereas
ZRM-compliant specifications have only the former possibility.

4.3.0.9. How? ISO Standard Z distinguishes the two intentions by the pres-
ence or absence of separation between the name and decoration. That separation
can be either white space or parentheses around the name. For example, consider
the parentheses in the following.

S == [x : N]

S ′ == [x : N]

T == (S)′ ∧ S ′

Page 23 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

The expression (S)′ is a reference to schema S with its components decorated,
giving [x ′ : N], whereas the expression S ′ is a reference to the schema S ′. (S)′

could equally have been written S ′. Separation is needed to get the ZRM inter-
pretation, but ZRM-compliant specifications might not have that separation. If
there is no white space, then a type-checking tool will report that the decorated
schema name is not declared. (A typechecker cannot sort this out, as it does
not know that the specification is in ZRM notation, both interpretations being
reasonable in ISO Standard Z.)

4.4. Decorated references to generic schemas

4.4.0.10. What? The decoration and instantiation on a reference to a generic
schema must be reversed, for example, S ′[N] must be changed to S [N]′.

4.4.0.11. Why? ZRM notation treats both the decoration and the instanti-
ation as part of a schema reference, whereas ISO Standard Z notation treats the
decoration as an expression. As only the reference can be instantiated, not an
expression, the instantiation must be done first.

4.4.0.12. How? A syntax checking tool will recognise a decoration expression,
and will then be able to recognise an instantiation list (that being distinct from
a schema construction expression, and can appear only in different contexts to
generic parameter lists), but will be unable to recognise their juxtaposition, so

Page 24 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

a syntax error is guaranteed. The decoration and the instantiation must be
reversed.

4.5. let on predicates

4.5.0.13. What? The let notation introduced in ZRM (second edition) cannot
be used as a predicate in ISO Standard Z.

4.5.0.14. Why? In ZRM notation, in a context where a predicate is expected,
a let with a schema name after its • could be parsed as either a let expression
used as a predicate or as a let predicate with a schema name used as a predicate,
but both have the same meaning. In ISO Standard Z, any schema expression
can be used after the •, and so there can be free variables in that part, leading
to different meanings depending on whether the let is taken to be an expression
or a predicate. So ISO Standard Z cannot have both let expressions and let
predicates. The expression form is the one retained, as it allows some uses of µ
to be avoided, µ being disliked if only because it is a Greek letter.

4.5.0.15. How? A syntax checking tool will detect some uses of let on pre-
dicates, but might mistake some uses of let on relational predicates as let on the
leading expression. Each use of let on a predicate should be replaced by ∃ (or by
∃1 or ∀ since all mean the same given that the quantified declarations are all ==
declarations).

Page 25 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

4.6. Renaming

4.6.0.16. What? The square-bracketted renaming notation on theta expres-
sions, that was introduced in 2nd edition ZRM, is parsed differently in ISO Stand-
ard Z.

4.6.0.17. Why? ISO Standard Z’s merging of the syntaxes of schemas and
expressions has resulted in a single renaming production that permits renaming
of any expression, with the type constraint that the expression be a schema. The
renaming production has lower precedence than that of θ, so θS [new/old , ...] is
parsed as (θS)[new/old , ...].

4.6.0.18. How? Since θS is a binding not a schema and renaming is permitted
only of a schema not a binding, the renaming of θS will always be detected as a
type error. The ZRM notation θS [new/old] denotes the binding 〈| old == new |〉.
(It is interesting to note that the effect of the notation is not to rename the name
on the left of the == but rather to substitute for the value on the right.) That same
binding can be built in ISO Standard Z using the notation let old == new • θS
(which with the addition of surrounding parentheses would be valid ZRM notation
too).

Page 26 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

4.7. Underlined infix relations

4.7.0.19. What? The underlining notation for infix relational operators, in-
troduced in ZRM second edition, cannot be used in ISO Standard Z.

4.7.0.20. Why? In ZRM notation, there is no way of introducing new op-
erator notation, so instead each use of an identifier as an infix relation can be
underlined to make clear that it is being used as an infix symbol. In ISO Stand-
ard Z, operator template paragraphs provide a way of introducing new operator
notation, so there is no need to mark uses of it as such. Moreover, the underlining
notation has not caught on, and it does not help with operators other than infix
relations.

4.7.0.21. How? A syntax checking tool will detect all uses of underlining
notation. Each underlined infix relational operator should be declared in an
earlier operator template paragraph.

4.8. Operator precedences

4.8.0.22. What? The following table enumerates the relative precedences of
the predicate and expression notations in ZRM and ISO Standard Z, from lowest
at the top to highest at the bottom, revealing some differences. Schema expression
notations of ZRM are omitted, as they appear in separate contexts.

Page 27 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

ZRM ISO Standard Z
newline

• •
| |
; ;
: : ==
⇔ ⇔
⇒ ⇒
∨ ∨
∧ ∧
¬ ¬

pre
prefix and infix relations relational predicates

if then else if then else
>>
o
9
\
�
pre

infix generics Operator ...
× ...templates ...

infix functions ...with...
P ...× P etc...

prefix generics ...at ...
(−) ...same...

((| |)) ...precedence.
juxtaposed function application juxtaposed function application

postfix functions
decoration
renaming

selection selection
θ θ

Page 28 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

The relative precedences of ZRM’s schema calculus operations are, from lowest

to highest, >>, o
9, \, �, ⇔, ⇒, ∨, ∧, pre, ¬ .

4.8.0.23. Why? Operator templates cause several rows of the table to appear
to be different, but in fact the only change in relative precedence caused by them
is that between juxtaposed function applications and postfix functions . The mer-
ging of schema expressions with expressions is the cause of most of the differences.
Many schema expressions use the same operators as quantified or logical predic-
ates. In ISO Standard Z, one of these schemas used as a predicate is equivalent
to the corresponding predicate involving the operand schemas used as predicates.
By using the same precedences, that ambiguity can be resolved arbitrarily. The

remaining schema operators >>, o
9, \, �, pre) are given precedences adjacent to

those of other expression-forming (functional) operators, and hence bind more
tightly than they do in ZRM. The ZRM column omits some operators (namely
newline, ==, decoration, and renaming) because ZRM notation permits their
use in only restricted contexts.

4.8.0.24. How? Type errors are likely but not guaranteed.

4.9. Semicolon between predicates

4.9.0.25. What? Predicates can no longer be conjoined by semicolons.

Page 29 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

4.9.0.26. Why? Semicolon has been used so seldom between predicates that it
is better not to allow it than to leave readers pondering when it is used. Moreover,
newline is now permitted between any pair of predicates, not only outermost
conjuncts in an Axiom-part, so there is still a lower-precedence alternative to ∧.

4.9.0.27. How? A syntax checking tool can distinguish declarations from pre-
dicates by context—where a declaration is acceptable, any predicate must be pre-
ceded by |—and so all cases of semicolons between predicates can be detected.
Each must be replaced by ∧ or newline.

4.10. Theta expressions

4.10.0.28. What? ISO Standard Z requires the types of components in the
operand schema to be the same as the types of the same names in the current
environment, unlike ZRM.

4.10.0.29. Why? Mismatching types is likely to be indicative of a mistake,
and, in those cases where it isn’t, binding extensions provide an alternative nota-
tion.

4.10.0.30. How? A typechecker will detect and report all such problems.

Page 30 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

4.11. Defunct toolkit operations

4.11.0.31. What? The toolkit no longer provides prefix , suffix , in, or oper-
ations on bags, except items , which now appears in sequence toolkit , where it
appears with an extra generic parameter to describe the type of the domain of
its argument.

4.11.0.32. Why? Operations that are not reused frequently do not deserve to
remain in the toolkit.

4.11.0.33. How? A typechecking tool will detect uses of these operations as
undefined names. The operations can still be provided, but in another Z section,
separate from the toolkit.

4.12. Lexis of words

4.12.0.34. What? The lexis of words has changed, resulting in, for example,
λ x being lexed as a single word.

4.12.0.35. Why? ISO Standard Z’s description of the Z lexis is at two levels:
Z characters and Z tokens. The class of Z characters encompasses all UNICODE
characters, both λ and x being viewed as letters. Some existing mark-ups do not
conform to the two-level view, defining instead mark-up for whole Z tokens. For

Page 31 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

example, the widely used mark-up \dom should really be dom, and a/ should
be formed from the mark-ups of the two characters. This issue is unlikely to be
a problem in practice, since existing tools will be able to claim conformance at
the syntactic level regardless of mark-up.

4.12.0.36. How? Ideally, white space should be inserted in the λ x example
to avoid a syntax error.

5. Subtle changes

This section discusses some subtle changes in the interpretation of certain nota-
tions that nevertheless leave the semantics of ZRM notation unchanged.

5.1. Quantified expressions

ZRM notation’s requirement that a schema quantification should quantify only
names that are declared within the schema after the • is relaxed in ISO Standard
Z, for consistency with the scope rules of quantified predicates. For example, the
expression ∀ x : A • [y : A] is illegal in ZRM but legal in ISO Standard Z.

Page 32 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

5.2. Preconditions

ZRM notation has pre predicates and pre schema expressions. ISO Standard Z
has only pre expressions. ZRM pre predicates are parsed as expressions, and those
expressions are treated as schema predicates, giving a backwards-compatible ef-
fect.

5.3. Schema instantiation

References to generic schemas no longer have to be given explicit instantiations,
so long as the instantiations can be determined from the context. On the other
hand, a reference to a generic schema in a theta expression is now permitted to
have an explicit instantiation.

5.4. Precedence of lambda and mu

ZRM notation requires all λ and µ expressions to be parenthesized. ISO Standard
Z gives them precedences, so that parentheses can often be omitted. Parentheses
are still required in the case of a µ expression whose • part is omitted.

Page 33 of 33

J I

Go Back

Full Screen

Close

Quit

1 Contents of this page

2 Background

3 Improvements

3.1 Sections

3.2 Mutually . . .

3.3 Operator templates

3.4 Conjectures

3.5 Binding . . .

3.6 Schemas as . . .

3.7 Empty schemas

3.8 Local constant . . .

3.9 Axiom-parts as . . .

3.10 Soft newlines

3.11 Toolkit

4 Incompatibilities

4.1 Singleton sets

4.1.0.1 What?

4.1.0.2 Why?

4.1.0.3 How?

4.2 Schema . . .

4.2.0.4 What?

4.2.0.5 Why?

4.2.0.6 How?

4.3 Decorated . . .

4.3.0.7 What?

4.3.0.8 Why?

4.3.0.9 How?

4.4 Decorated . . .

4.4.0.10 What?

4.4.0.11 Why?

4.4.0.12 How?

4.5 let on predicates

4.5.0.13 What?

4.5.0.14 Why?

4.5.0.15 How?

4.6 Renaming

4.6.0.16 What?

4.6.0.17 Why?

4.6.0.18 How?

4.7 Underlined infix . . .

4.7.0.19 What?

4.7.0.20 Why?

4.7.0.21 How?

4.8 Operator . . .

4.8.0.22 What?

4.8.0.23 Why?

4.8.0.24 How?

4.9 Semicolon . . .

4.9.0.25 What?

4.9.0.26 Why?

4.9.0.27 How?

4.10 Theta expressions

4.10.0.28 What?

4.10.0.29 Why?

4.10.0.30 How?

4.11 Defunct toolkit . . .

4.11.0.31 What?

4.11.0.32 Why?

4.11.0.33 How?

4.12 Lexis of words

4.12.0.34 What?

4.12.0.35 Why?

4.12.0.36 How?

5 Subtle changes

5.1 Quantified . . .

5.2 Preconditions

5.3 Schema . . .

5.4 Precedence of . . .

6 Conclusions

6. Conclusions

Several innovations in ISO Standard Z relative to ZRM have been presented.
These are at the cost of some backwards incompatibilities. Those incompatibilit-
ies have been explained and justified, and advice has been given on how to detect
and resolve instances of them in existing Z specifications. It is hoped that the in-
novations presented resolve satisfactorily the known inadequacies in the notation
of ZRM, and that this paper will assist their adoption into practice. Inevitably,
the final CD will not be the last word on Z—the Z panel has already discussed
some other issues, without coming to agreements yet.

IT 18-Jan-2002

	Contents of this page
	Background
	Improvements
	Sections
	Mutually recursive free types
	Operator templates
	Conjectures
	Binding extensions and tuple selections
	Schemas as expressions
	Empty schemas
	Local constant declarations
	Axiom-parts as predicates
	Soft newlines
	Toolkit

	Incompatibilities
	Singleton sets
	Schema definition symbol
	Decorated references to schemas
	Decorated references to generic schemas
	let on predicates
	Renaming
	Underlined infix relations
	Operator precedences
	Semicolon between predicates
	Theta expressions
	Defunct toolkit operations
	Lexis of words

	Subtle changes
	Quantified expressions
	Preconditions
	Schema instantiation
	Precedence of lambda and mu

	Conclusions

