rewrite by antecedent
/ Reference manual / Z-related commands / Proof rule commands

The rewrite by antecedent command applies a rewrite rule to an expression or a
predicate in a goal.

The expression or predicate is selected first, and the rewrite rule second.

In the expression case, the rewrite rule must be a predicate in one of the following
forms.

pattern = replacement
V't e pattern = replacement

In the predicate case, the rewrite rule must be a predicate in one of the following
forms.

pattern < replacement

pattern (& true replacement)
- pattern (& false replacement)
V't e pattern < replacement

V't e pattern (& true replacement)
V't e — pattern (& false replacement)

The rewrite rule must be an antecedent of the expression or predicate, meaning
that it must be a conjunct of a surrounding conjunction predicate, or of the left
operand of a surrounding implication predicate, or of the | part of a surrounding



schema text, or of the e part of a surrounding (unique) existential quantification
predicate, or of an antecedent predicate of the surrounding goal. The following
is an attempt to formalize this, in which r is the rewrite rule appearing as a
conjunct of a larger predicate r A ¢ (not necessarily the first conjunct), and f is
the selected formula appearing within a larger predicate p(f).

r A p(f)
rAq=p(f)
...‘7“/\qop(f)
3ds | p(f) e 7 A g
3, ds | p(f) e 7 A g

The pattern part of the rewrite rule must match the selected expression or pre-
dicate, interpreting the variables declared by any schema text ¢ as jokers for this
match.

In the case of a quantified rewrite rule, side-conditions arise from any declarations
and | part of the schema text t. These side-conditions must be automatically
decidable for the command to be applicable. Currently, the simplification tac
command is used as this decision procedure.

The expression or predicate is replaced by the corresponding instantiation of the
replacement.

Unlike rewrite by rule and rewrite by section, the rewrite rule must match the
entire expression or predicate, and only one rewrite is done.

This command differs from the Leibniz command in the following ways. Rewriting



is always done left-to-right, never right-to-left (see commutation). The equality
or equivalence used as the rewrite rule can be within a quantified predicate. Only
one formula can be rewritten by a use of this command (the side-conditions for
multiple rewrites would have been too awkward to manage, but this might change
in future). The selections must be within a goal, not any other form of paragraph
(because there is always somewhere within a goal to put the side-conditions, again
this might change soon).

A trace of the instantiated rewrites can be made to appear in the shell window
by invoking cadiz with the option -dw.

1. Tactic examples

“rewrite by antecedent” e p “rewrite by antecedent” py ps

The first example rewrites expression e using predicate p. The second example
rewrites predicate p; using predicate ps.

IT 30-Nov-2000



	Tactic examples

