
Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 1

Compact Lecture

Multimedia Coding:
Methods & Applications

Part 1.2: Introducing Coding Fundamentals

Dr. Klaus Illgner
Dr. Uwe Rauschenbach

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 3

What is „Probability?“

Several concepts to approach „probability“

Empirical concept „Relative Frequency“
Let‘s start with a finite set of events, e.g. a die

are elementary events

is the probability space

Tossing the dice once called an experiment with a certain unknown outcome

The outcome is an event element of the probability space

Event is any subset of the probability space, e.g.

Relative frequency of event H(A) = nA
n

Ω = {1, 2, 3, 4, 5, 6}
Ω

A = {2, 4, 6}
A A ⊂ Ω

A
Repeating the experiment N times

Probability: P (A) := lim
n→∞H(A)

Note:
This it NOT a definition!

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 4

Concept of Random Variables

Discrete Random Variable (RV):
Is a function to map the outcome of an experiment to a number

Discrete Random Process:
Sequence of random variables

used to model signal sources

X : Ω→ Z

Ω = {KOPF,ZAHL}
x1 = KOPF, x2 = ZAHL

X(KOPF) = 1, pX(1) = p1 = pKOPF

X(ZAHL) = 2, pX(2) = p2 = pZAHL

X = {Xi}

x(A)

Probability of a random variable:
event
with probability

A = {x ≤ x0}
P (A) = P{x ≤ x0}

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 5

Distribution and Density Functions

Characteristics:

px(i) ≥ 0;
PN

i=1 px(i) = 1

Distribution function:

Probability density function (pdf):

pX(x) :=
d
dxPX(x)

Example: PF of a faire die

P (xn) =
Pn

i=−∞ p(xn), n ≤ N

PX(x) = P{X ≤ x}

1 2 3 4 5 6 xPX(−∞) = 0 PX(∞) = 1

1

if x1 < x2 then PX(x1) < PX(x2)

Characteristics:

Example: PDF of a faire die

1 2 3 4 5 6 x

1/6

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 6

Specific Probability Density Functions

E{X} =Pi xip(xi), xi ∈ ΩExpectation:

Moment of kth order
(Mean = 1st order)

Normal standard distribution (Gaussian Distribution):

x̄N = 0, σ2N = 1

Other frequently applicable probability density functions:
• Gamma distribution
• Binomial distribution
• Laplace distribution
• Poisson distribution

pN (x) =
1

σN
√
2π
e−x

2/2σ2N

Characterizing RV:

X̄ = E{Xk}

Central moment of kth order
(variance = 1st order)

σk = E{(X− x̄)k} = Pi(xi − x̄)kp(xi)

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 7

Joint Distribution Functions

Joint density distribution

Statistical independence:

p(xi, yj), RVX,Y

p(xi, yj) = p(xi)p(yj)

Conditional probability:

Bayes‘ rule:

p(x|y) := p(x, y)

p(y)

p(x|y) = p(y|x)
p(y)

p(x)

These concepts can be generalized for random vectors.

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 8

Information
Example: Message

Transmitter has an information (in mind) and wants to communicate it (semantics)
He formulates sentences – by using a character set (coding of the information)
Receiver regenerates sentences from the characters received (decoding)
sink reconstructs semantics -- „understands“ the meaning of the sentence (hopefully correctly)

Coding DecodingSource Sink

Alphabet Alphabet

Channel

distortionloss

What is information?
• Information theory defines the information content of a message as “amount of
information” – independent of the actual meaning (semantics).

• Entropy refers to the average information content of a source

X Y Y‘ X‘

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 9

What does „Coding“ really mean?

Goal:
representing „Information“ with the least number of “bits”
… without changing / limiting the information

redundancy reduction, also termed lossless coding
in contrast to lossy coding, which modifies the source signal

Which is the most “efficient” code?
transmitting the most frequently symbols with the shortest code words
selecting the right symbols (correlation / higher order statistics)
requires to model the signal statistics of the source

Characteristics:
• Separation of transmitted information from its meaning
• the message itself as well as the transmission point of time is unknown

information content is the “uncertainty” / information not known to the receiver

Coding: one-to-one mapping of source alphabet to code alphabet

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 10

Types of Codes

Example: Morse-Code
Mapping of characters, digits, and 3 control characters to binary symbols

Length of binary character string depends on frequency of characters

Source alphabet X = {x1, x2, . . . , xN}
Code alphabet Y = {y1, y2, . . . , yM}

X = {A , B , . . . , Z , 0 , . . . , 9}
Y = {• , − }

Code

Block codes „fixed length“ codes, e.g. ASCII, HEX, …
not applicable to source coding (redundancy reduction)

Variable length codes (VLC): frequent symbols short code words
seldom symbols long code words

Set of representable messages: Y∗ = Ui∈NYi
C : X → Y∗

A • −
E •
Q − − • −

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 11

Information Content and Entropy

Entropy represents the average Information content /
uncertainty of a random variable

Code word length (bits)

Entropy of a binary source

l(x), x ∈ X
Expected code word length

L(C) =
X
x∈X

l(x)px

Source signal and random variables: X : x ∈ X , Y : y ∈ Y
Information content of symbols

I(xi) := − log2 p(xi), (in bit)

H(X) = E{I(X)} = −
X
x∈X

pxlog2(px)

xi

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 12

Unique Decodability

Code is NOT instantaneously decodable,
Since a “comma” is needed for instantaneously decode received symbols

(without knowing the other coded symbols)
(compare Morse-Code comma inserts breaks between symbols

Example:

x
C(x)

A
00

B
01

C
0

D
10

E
11

0

1

0

1

A

B

C

0

1

D

E
Code is uniquely decodable,
no codeword is a combination of 2 other codewords

0

1

0

1

A

B
C

0

1

D

E

u

x
C(x)

A
00

B
01

C
0u

D
10

E
11

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 13

Continuous Decodability

Definition:
A Code, which can be continuously and instantaneously decoded without coma is
called a Prefix-Code. No code word is a prefix of any other code word.

A prefix code is characterized by the fact, that only leaves are valid code words.

Example:

x
C(x)

A
010

B
011

C
00

D
10

E
11

0

1

0

1
A

B

C

0

1

D

E

0

1

So called (3 3 2 2 2) Code, and (2 2 3 3 3) respectively

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 14

Kraft Inequality

Theorem:
a prefix code exists if and only if:

K =
NX
i=1

1

M l(xi)
≤ 1 X = {x1, x2, . . . , xN}

Y = {y1, y2, . . . , yM}

Example:

For (2 2 3 3 3) code :

K = 1
22 +

1
22 +

1
23 +

1
23 +

1
23 = 0, 875 < 1

M: alphabt size; binary M=2
N: number of code words

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 15

What is a „good“ Code? – Optimal Codes

Minimizing the mean expected code length

Entropy is the lower bound of the expected code length!

Optimal code length:
Binary codes: D = 2

Characteristics of optimal codes

• The longest code words (minimum 2) have the same length
• They differ only on the least significant bit

pi > pj → li ≤ lj ∀i, j

l(xi)
∗ = − logD xi

L(C) =
X
x∈X

l(x)px → min

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 16

Huffman Code

Huffman Code is just one possible optimal code

Optimal code satisfies: l(xi) = I(xi) = − log2(pi)
BUT: l is not an integer

Shannon Code: l(xi) = d− log2(pi)e
BUT: Shannon Code is in general NOT optimal

1 0,01
2 0,15
3 0,2
4 0,22
5 0,42

0
1 0,16

0,2
0,22
0,42

1

0,22
0,36

0,42

0

0,581
0

0,42
1
0

1,00

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 17

Code Extensions (1)

For optimal codes the equation holds (e.g. Huffman Code)
H(X) ≤ L(X) < H(X) + 1

Optimization Approach:
Handling sequences of symbols as new symbols (new alphabet)

Enlarging the alphabet size

Problem:
requirement to assign at least 1 bit to the most likely symbol

Huffman Code is inefficient for unequal distributions

X = {x1, x2, . . . , xN}Original source:

New source: merging of m symbols new alphabet with Nm symbols

Such a code extension is termed product code

Cm(x1, x2, . . . , xm) = C(x1)C(x2) . . . C(xm)

X = {x1x1, x2x1, . . . , xNx1, x1x2, x2x2, . . . , xNx2, . . . xNxN} m = 2

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 18

Code Extensions (2)

Lower bound given by entropy can be reached in principle
implementation cost increases exponentially

H(X1, X2, . . . , Xn) =
P
H(Xi) = nH(X)

H(X) ≤ L(X) < H(X) + 1
n

Assuming statistical independence:

Alternative:
Calculating a “new” optimal code based on product probabilities

Disadvantage:
Size of code table increases exponentially

Practically not manageable anymore
gain shrinks asymptotically

px1x2 = px1px2

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 19

Code Extensions: An Example

Original source:

H = 0,88 bit / symbol
L = 1 bit / symbol

New source: (assuming statistically independent symbols)

S1: (black) pS = 0.3 l(S1) = 1 bit
S2: (white) pw = 0.7 l(S2) = 1 bit

S1: (black, black) pSS = 0.09 l(S1) = 3 bit
S2: (black, white) pSW = 0.21 l(S2) = 3 bit
S3: (white, black) pWS = 0.21 l(S3) = 2 bit
S4: (white, white) pWW = 0.49 l(S4) = 1 bit

CR = H – L = 0,12 bit / symbol

CR = H – L = 0,03 bit / symbolH = 1,76 bit / 2 symbole = 0,88 bit / symbol
L = 1,81 bit / 2 symbole = 0,91 bit / symbol

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 20

Example FAX

Assuming statistical independence
the average code length gets smaller
by treating several (two) pixels as one symbol:

p(1) = 0.95232 H = 0.19475 bit
p(0) = 0.04768 L = 1 bit

1. Code extension:
p(0) * p(0) = 0,002273 3 bit
p(0) * p(1) = 0,045407 3 bit
p(0) * p(1) = 0,045407 2 bit
p(1) * p(1) = 0,906913 1 bit

L = 1.14 bit / 2 symbols = 0.57038 bit / symbol

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 21

Conditional Entropy

H(X) H(Y)

H(X,Y) = H(X) +H(Y/X) = H(Y) +H(X|Y)

Statistical dependency:
Knowing the previously decoded symbol allows to deduce information
about following symbol

H(Y |X) = H(Y)− I(Y ;X) ≤ H(Y)

H(Y |X)H(X|Y)
I(Y ;X)

Mutual information:
I(Y ;X) = H(Y)H(Y |X) = H(X)H(X|Y) = I(X;Y)

Chain property:

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 22

Symbols Sequences – Source with Memory

Example:
Source transmits words (ordered set of symbols)

frequency of appearance depends on joint probability

Coding taking into account neighbored symbols (in time / in space)
taking into account the context

Modeling the words a random vector:

p(x1, x2, x3, . . . , xK)

X = {X1,X2, . . . ,XK}

H(X,Y) = H(X) +H(Y)− I(X;Y)

Statistical dependency of symbols source with memory I(X;Y) > 0

Joint entropy (K=2)

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 23

Example: FAX

Replacing the mean code length with actually measured joint probabilities

P(0,0) = 0.039972 p(0) * p(0) = 0,002273
P(0,1) = 0.007617 p(0) * p(1) = 0,045407
P(1,0) = 0.007798 p(0) * p(1) = 0,045407
P(1,1) = 0.944613 p(1) * p(1) = 0,906913

Neighbored signal values are statistically dependent

H = 0,18576 bit /sample H = 0.19475 bit/sample

P(0,0) = 2 bit
P(1,0) = 3 bit
P(0,1) = 3 bit L = 1,0708 bit / 2 sample
P (1,1) = 1bit = 0,5354 bit / sample

factor 17!

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 24

Predictive Coding

different approach (traditional way) to take into account statistical dependency of
random vectors for coding

Principle:
Predict symbol to be coded exploiting the knowledge of neighbored symbols
causal predictor: Prediction is based on already coded (and known to the receiver)
neighbored symbols.

Approach:

f()
Speicher

xi ei

x̂i

Encoder

f()
Speicher

Decoder

ei = xi − x̂i, x̂i = h(xi−1, xi−2, xi−3, . . .)

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 25

Linear Prediction

Optimization criteria:

goal: minimizing the prediction error

criteria: MSE

General linear filter h: e[n] =

pX
i=1

hix[n− i]

E(e2)→ min

Solving an equation system (normal equations / Yule-Walker equations)

Approach to solve the equations Levinson-Durban algorithm

pX
i=1

hiϕxx(i− j) = ϕxx(j) j = 1 . . . p

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 26

DPCM (Differential Pulse Code Modulation)

Simplest form of prediction
Linear prediction:

e[n] = x[n] – x[n-1]

Problem:
Extending the range of the differential signal e

But:
With knowing the range of the original signal

x[n] = (0,1)
e[n] = (0,1) (equal, unequal)

P(0) = 0,983811
P(1) = 0,016189

H = 0,11946 (PCM: H= 0,18576)

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 27

Context Dependent Coding

Precondition: source symbols are statistically dependent
Based on already sent symbols (thus known to the receiver) a „context“ is
created
Coding of a symbol depending on its context

– Selecting different code tables dependent on the symbols in the context
– Code tables are matching the different symbol probabilities

Example: coding a FAX-image

A B

D x

C

H(X|A,B,C,D) (B,D) p(x=0)

(0,0)
(1,0)
(0,1)
(1,1)

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 28

Dynamic Statistics
Statistics changes during the encoding process

dynamically modifying the code being used for encoding
– Modifed table must be transmitted (reduces the gain of modified codes)
– decoder must be able to reconstruct the code based on received symbols

adaptive approaches

Huffman Code
Permanently updating the symbol frequency in a table
Recalculating the code table based on the symbol frequencies

– After each symbol
– After N symbols
–

Advantage:
higher compression efficiency

Disadvantage:
higher processing power and memory demand for recalculating
the code tables in the encoder as well as in the decoder

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 29

Arithmetic Coding

Approach:
each (infinitely long) sequence of binary digits represents a number

example: 0,101101 = ½ + 0 + 1/8 + 1/16 + 0 + 1/64 = 45 / 64

y ∈ [0, 1)

dyeN = bycN + 2−N
Principle of intervals interval partitioning

bycN ≤ y < bycN + 2−N

If the lower bound of a number (integer) is known,
the upper bound of that number is also known.

every finite sequence of N binary digits uniquely defines an interval of size 2-N

relative frequency sums up to 1
complete and non-overlapping partitioning of the interval [0,1)

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 30

Arithmetic Encoding Procedure

Encoder working principle:
• partition the interval [0,1) according to the probabilities of the symbols
• generate an interval partition using the incoming binary symnols
• the binray sequence of coded symbols representd to LOWER probability bound

Example:

Decoder
• reconstructs the lower and upper interval boundaries

A (p = 0.5) B (p=0.2) C (p=0.3)

Important: accumulated probabilities

0.5 0.7 1.00.0

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 31

Algorithm

Encoder:
Low = 0

High = 1.0

While input symbols available

get (symbol)

range = high – low;

high = low + range * high_range (symbol);

low = low + range * low_range (symbol)

End of while;

Output low

Decoder:
Do

identify interval of present code number

output corresponding symbol

range = symbol_high – symbol_low

number -= symbol_low

number /= range

While number == 0;

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 32

Example:

Symbol Range Low High Channel Low High Range Number Symbol

-- -- 0 1 -- 0 1 1 0,554151 --
B 1 0,5 0,7 01 0.5 0,2 0,054151 B

A 0,2 0,5 0,6 1 0,5 A

C 0,1 0,507 0,6 00 0,3

A 0,093 0,507 0,554
151

1 0,5

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 33

Advantage of Arithmetic Coding

Implementation complexity significantly higher than for Huffman-Codes

No limitations with respect to the length of sequences to be encoded
(instantaneous coding)

Context dependent and adaptive coding extensions do not increase the
computational complexity (except for calculating the context and dynamically
adapt the context)

Low coding latency

High efficiency

M: sequence lengthH ≤ R < H + 2/m

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 34

Different Coding Formats

FAX group 3

FAX group 4

JBIG

JPEG lossless

Lempel-Ziv

Zero-Tree Coding

Context adaptive arithmetic coding
– MQ-Coder (used in JPEG2000)

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 35

MQ-Coder

Context dependent binary arithmetic codec

Coding of binary symbols

Based on their respective frequency in the coding process

For each context probability table is tracked

Updating the frequency using a finite-state engine

Peculiarity:

Fast adaptation of symbol probabilities employed in coding

Approach:

Assigns a context to each individual symbol

adapt probability with each coded symbol
P1(ctx1) =

n1+1
N+2P1(ctxi) = (n1 + 1)/(N + 2)

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 36

Part: 1.4
Introduction to Quantization

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 37

Redundanz und Irrelevanz

Analogues audio / video signals
Information content infinite

Digital signals
– Finite information content
– Representation > entropy

Redundancy reduction
– representation ~ entropy

Lossless coding
Irrelevance reduction

– Irrelevance reduction; subjectively not or
barely noticeable distortions

– e.g. by quantization
Lossy coding

Significant distortions
– Determined by application

ra
te

 R

Distortion D

redundancy
reduction

Irrelevanz-
reduction

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 38

Scalar Quantization

Principle:
Assign an interval of signal values to a
single (replacement) value

Design of a quantizer:
Split up signal range into intervals

Determine the replacement value

… under certain design criteria

Methods to visualize quantizers
1D along a numbering beam

2D as step curve

x

y

yi

yi+1

x

yyi+1yi

∆i

∆i

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 39

Consequences of Quantization

PDF – Entropy reduction
– Reduction of possible signal values
– Reduction of entropy
– Quantization results in loss of information

Information is not any more contained in the
signal

Increase the signal distortion
Distortion:

Mean Square Error:

SNR:

PSNR:

fre
qu

en
cy

Signal value

D = E{f(X − Y)}
D = E{(X − Y)2}
SNR = log10

Px
D [dB]

PSNR = log10
maxPx
D [dB]

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 40

Quantizer Design

Selecting the “optimal” replacement value

(using an uniform interval partition)

criteria: minimize the MSE

Llyod-Max Quantizer

fre
qu

en
cy

Quantization error

fre
qu

en
cy

Quantization errorac
cu

m
ul

at
ed

fre
qu

en
cy

D =
P

i pie
2
i

ei

Distortion depends on PDF of
quantization errors signal:

yk =

P
i∈∆k

xipiP
i∈∆k

pi

Replacement value in the center of mass of p(x) .
of the area spanned over the interval

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 41

Quantiser Types

Mid-thread
– Replacement value for value 0

Mid raise
– No replacement value for 0

Linear
– equally sized interval partitioning for the entire range

Non-linear utilizing a compander
– Implementing a non-linear quantizer
– Optimal NL-Quantiser: each interval contributes approximately the same amont to the overal distrotion Di = 1/N D

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 42

Statistical Dependency and Joint Probability Distribution

X1, X2 are uncorrelated
E{X1, X2} = m1 ·m2 = 0

X1, X2 are statistically independent

p(x1, x2) = pX1
(x1)pX2

(x2)

X1, X2 are uncorrelated
E{X1, X2} = m1 ·m2 = 0

X1, X2 Is statistically dependent

So
ur

ce
: S

te
fa

n
Si

m
on

, I
EN

T
R

W
TH

 A
ac

he
n

20
00

p(x1, x2) 6= pX1
(x1)pX2

(x2)

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 43

Vector Quantization (1)
So

ur
ce

: S
te

fa
n

Si
m

on
, I

EN
T

R
W

TH
 A

ac
he

n
20

00

Apply the scalar Llyod quantizers which
Have individually beein optimized for
X1 and X2

cross: replacement vectors

lines: partitions

bad adaptation to
joint density

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 44

Vector Quantization (2)

Partition optimized with
LBG-Algorithm for
144 replacement vectors
(criterion: MSE)

cells adjust to joint density
distribution

improving the SNR by 1.96 dB
with identical code book size

Q
ue

lle
: S

te
fa

n
Si

m
on

, I
EN

T
R

W
TH

 A
ac

he
n

20
00

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 45

Aspects of Vector Quantization

Vector quantization assigns
Individual regions,
Represented by a single replacement
vector,
A binary code word.

All regions together assemble a non-
uniform partition.

The code book design determines the
optimal partition and identifies the
optimal replacement vectors for each
cell.

The vectors are collected in code books.

Illgner/Rauschenbach: Multimedia Coding Part 1.2: Introducing Coding Fundamentals 1 - 46

Summary

The basic for coding of 1D / 2D signals have been introduced and the
following processing seps have been explained:

Sampling and aliasing
Quantization
Filtering
Transformation
Prediction
Entropy coding

The following sections introduce concrete coding concepts and algorithms for
speech, audio, still images and video.

	Compact Lecture��Multimedia Coding: �Methods & Applications ��Part 1.2: Introducing Coding Fundamentals
	Gliederung
	What is „Probability?“
	Concept of Random Variables
	Distribution and Density Functions
	Specific Probability Density Functions
	Joint Distribution Functions
	Information
	What does „Coding“ really mean?
	Types of Codes
	Information Content and Entropy
	Unique Decodability
	Continuous Decodability
	Kraft Inequality
	What is a „good“ Code? – Optimal Codes
	Huffman Code
	Code Extensions (1)
	Code Extensions (2)
	Code Extensions: An Example
	Example FAX
	Conditional Entropy
	Symbols Sequences – Source with Memory
	Example: FAX
	Predictive Coding
	Linear Prediction
	DPCM (Differential Pulse Code Modulation)
	Context Dependent Coding
	Dynamic Statistics
	Arithmetic Coding
	Arithmetic Encoding Procedure
	Algorithm
	Example:
	Advantage of Arithmetic Coding
	Different Coding Formats
	MQ-Coder
	Foliennummer 36
	Redundanz und Irrelevanz
	Scalar Quantization
	Consequences of Quantization
	Quantizer Design
	Quantiser Types
	Statistical Dependency and Joint Probability Distribution
	Vector Quantization (1)
	Vector Quantization (2)
	Aspects of Vector Quantization
	Summary
	Foliennummer 47
	Beispiel

