Compact Lecture

Multimedia Coding: Methods \& Applications

Part 1.2: Introducing Coding Fundamentals

Dr. Klaus IIIgner
Dr. Uwe Rauschenbach

What is „Probability?"

Several concepts to approach „probability"

Empirical concept \rightarrow „Relative Frequency"

Let's start with a finite set of events, e.g. a die
$\Omega=\{1,2,3,4,5,6\}$ are elementary events
Ω is the probability space
Tossing the dice once \rightarrow called an experiment with a certain unknown outcome
The outcome is an event $\mathcal{A} \rightarrow$ element of the probability space $\mathcal{A} \subset \Omega$
Event is any subset of the probability space, e.g. $\mathcal{A}=\{2,4,6\}$

Repeating the experiment N times
Relative frequency of event $\mathcal{A} \quad H(\mathcal{A})=\frac{n_{\mathcal{A}}}{n}$
Probability:

$$
P(\mathcal{A}):=\lim _{n \rightarrow \infty} H(\mathcal{A})
$$

Note:
This it NOT a definition!

Concept of Random Variables

Discrete Random Variable (RV): $\quad X: \Omega \rightarrow \mathbb{Z}$
Is a function to map the outcome of an experiment to a number $\mathbf{x}(\mathcal{A})$

$$
\begin{array}{ll}
\Omega=\{\mathrm{KOPF}, \mathrm{ZAHL}\} & X(K O P F)=1, p_{X}(1)=p_{1}=p_{K O P F} \\
x_{1}=\mathrm{KOPF}, x_{2}=\mathrm{ZAHL} & X(Z A H L)=2, p_{X}(2)=p_{2}=p_{Z A H L}
\end{array}
$$

Discrete Random Process:
Sequence of random variables $\quad \mathbf{X}=\left\{X_{i}\right\}$
\rightarrow used to model signal sources

Probability of a random variable:
event

$$
\begin{aligned}
& \mathcal{A}=\left\{\mathbf{x} \leq x_{0}\right\} \\
& P(\mathcal{A})=P\left\{\mathbf{x} \leq x_{0}\right\}
\end{aligned}
$$

with probability

Distribution and Density Functions

Distribution function:

$$
P_{X}(x)=P\{X \leq x\}
$$

Characteristics:

$$
\begin{aligned}
& P_{X}(-\infty)=0 \quad P_{X}(\infty)=1 \\
& \text { if } \quad x_{1}<x_{2} \quad \text { then } \quad P_{X}\left(x_{1}\right)<P_{X}\left(x_{2}\right)
\end{aligned}
$$

Probability density function (pdf):
Example: PDF of a faire die

$$
p_{X}(x):=\frac{d}{d x} P_{X}(x)
$$

Characteristics:

$$
\begin{aligned}
& p_{x}(i) \geq 0 ; \quad \sum_{i=1}^{N} p_{x}(i)=1 \\
& P\left(x_{n}\right)=\sum_{i=-\infty}^{n} p\left(x_{n}\right), \quad n \leq N
\end{aligned}
$$

Specific Probability Density Functions

Normal standard distribution (Gaussian Distribution):

$$
p_{N}(x)=\frac{1}{\sigma_{N} \sqrt{2 \pi}} e^{-x^{2} / 2 \sigma_{N}^{2}} \quad \bar{x}_{N}=0, \quad \sigma_{N}^{2}=1
$$

Other frequently applicable probability density functions:

- Gamma distribution
- Binomial distribution
- Laplace distribution

- Poisson distribution

Characterizing RV:

Expectation:
Moment of $\mathrm{k}^{\text {th }}$ order (Mean $=1^{\text {st }}$ order $)$

Central moment of $k^{\text {th }}$ order (variance $=1^{\text {st }}$ order)

$$
E\{\mathbf{X}\}=\sum_{i} x_{i} p\left(x_{i}\right), \quad x_{i} \in \Omega
$$

$$
\bar{X}=E\left\{\mathbf{X}^{k}\right\}
$$

$$
\sigma^{k}=E\left\{(\mathbf{X}-\bar{x})^{k}\right\}=\sum_{i}\left(x_{i}-\bar{x}\right)^{k} p\left(x_{i}\right)
$$

Joint Distribution Functions

Joint density distribution
Statistical independence:

Conditional probability:

Bayes' rule:

$$
\begin{aligned}
& p\left(x_{i}, y_{j}\right), \quad \text { RVX, } \mathbf{Y} \\
& p\left(x_{i}, y_{j}\right)=p\left(x_{i}\right) p\left(y_{j}\right)
\end{aligned}
$$

$$
p(x \mid y):=\frac{p(x, y)}{p(y)}
$$

$$
p(x \mid y)=\frac{p(y \mid x)}{p(y)} p(x)
$$

These concepts can be generalized for random vectors.

Information

Example: Message

- Transmitter has an information (in mind) and wants to communicate it (semantics)
- He formulates sentences - by using a character set (coding of the information)
- Receiver regenerates sentences from the characters received (decoding)
- sink reconstructs semantics -- „understands" the meaning of the sentence (hopefully correctly)

What is information?

- Information theory defines the information content of a message as "amount of information" - independent of the actual meaning (semantics).
- Entropy refers to the average information content of a source

What does „Coding" really mean?

Characteristics:

- Separation of transmitted information from its meaning
- the message itself as well as the transmission point of time is unknown
\rightarrow information content is the "uncertainty" / information not known to the receiver
Coding: one-to-one mapping of source alphabet to code alphabet

Goal:

representing „Information" with the least number of "bits"
... without changing / limiting the information
\rightarrow redundancy reduction, also termed lossless coding
\rightarrow in contrast to lossy coding, which modifies the source signal

Which is the most "efficient" code?

\rightarrow transmitting the most frequently symbols with the shortest code words
\rightarrow selecting the right symbols (correlation / higher order statistics)
\rightarrow requires to model the signal statistics of the source

Types of Codes

Source alphabet $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$
Code alphabet $\mathcal{Y}=\left\{y_{1}, y_{2}, \ldots, y_{M}\right\}$
Set of representable messages: $\quad \mathcal{Y}^{*}=U_{i \in \mathbb{N}} \mathcal{Y}^{i}$
Code

$$
\mathcal{C}: \mathcal{X} \rightarrow \mathcal{Y}^{*}
$$

Block codes \rightarrow „fixed length" codes, e.g. ASCII, HEX, ... not applicable to source coding (redundancy reduction)
Variable length codes (VLC): frequent symbols \rightarrow short code words

$$
\text { seldom symbols } \rightarrow \text { long code words }
$$

Example: Morse-Code

- Mapping of characters, digits, and 3 control characters to binary symbols

$\mathrm{A} \bullet-$	$\mathcal{X}=\{A, B, \ldots, Z, 0, \ldots, 9\}$
$\mathrm{E} \bullet$	$\mathcal{Y}=\{\bullet,-\}$
$\mathrm{Q}--\bullet-$	

- Length of binary character string depends on frequency of characters

Information Content and Entropy

Source signal and random variables: $\quad \mathbf{X}: x \in \mathcal{X}, \quad \mathbf{Y}: y \in \mathcal{Y}$
Information content of symbols $\quad x_{i}$

$$
I\left(x_{i}\right):=-\log _{2} p\left(x_{i}\right), \quad \text { (in bit) }
$$

Entropy represents the average Information content / uncertainty of a random variable

$$
H(\mathbf{X})=E\{I(\mathbf{X})\}=-\sum_{x \in \mathcal{X}} p_{x} \log _{2}\left(p_{x}\right)
$$

Code word length (bits)

$$
l(x), \quad x \in \mathcal{X}
$$

Expected code word length

$$
L(\mathcal{C})=\sum_{x \in \mathcal{X}} l(x) p_{x}
$$

Unique Decodability

Example:

X	A	B	C	D	E
$\mathcal{C}(x)$	00	01	0	10	11

Code is uniquely decodable, no codeword is a combination of 2 other codewords

Code is NOT instantaneously decodable, Since a "comma" is needed for instantaneously decode received symbols (without knowing the other coded symbols) (compare Morse-Code \rightarrow comma inserts breaks between symbols ${ }_{0}$

X	A	B	C	D	E
$\mathcal{C}(x)$	00	01	$0 u$	10	11

Continuous Decodability

Definition:

A Code, which can be continuously and instantaneously decoded without coma is called a Prefix-Code. No code word is a prefix of any other code word.

A prefix code is characterized by the fact, that only leaves are valid code words.

Example:

X	A	B	C	D	E
$\mathcal{C}(x)$	010	011	00	10	11

So called (3 322 2) Code, and (2 233 3) respectively

Kraft Inequality

Theorem:

a prefix code exists if and only if:

$$
K=\sum_{i=1}^{N} \frac{1}{M^{l\left(x_{i}\right)}} \leq 1
$$

$$
\begin{aligned}
\mathcal{X} & =\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \\
\mathcal{Y} & =\left\{y_{1}, y_{2}, \ldots, y_{M}\right\}
\end{aligned}
$$

M : alphabt size; binary $\mathrm{M}=2$
N : number of code words

Example:

For (2 233 3) code :

$$
K=\frac{1}{2^{2}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{3}}+\frac{1}{2^{3}}=0,875<1
$$

What is a „good" Code? - Optimal Codes

Minimizing the mean expected code length

$$
L(\mathcal{C})=\sum_{x \in \mathcal{X}} l(x) p_{x} \quad \rightarrow \min
$$

Optimal code length:

$$
l\left(x_{i}\right)^{*}=-\log _{D} x_{i}
$$

Binary codes: D = 2
Entropy is the lower bound of the expected code length!

Characteristics of optimal codes

$$
p_{i}>p_{j} \rightarrow l_{i} \leq l_{j} \quad \forall i, j
$$

- The longest code words (minimum 2) have the same length
- They differ only on the least significant bit

Huffman Code

Optimal code satisfies: $\quad l\left(x_{i}\right)=I\left(x_{i}\right)=-\log _{2}\left(p_{i}\right)$
BUT: l is not an integer
Shannon Code: $\quad l\left(x_{i}\right)=\left\lceil-\log _{2}\left(p_{i}\right)\right\rceil$
BUT: Shannon Code is in general NOT optimal

Huffman Code is just one possible optimal code

Code Extensions (1)

Problem:

requirement to assign at least 1 bit to the most likely symbol
\rightarrow Huffman Code is inefficient for unequal distributions
For optimal codes the equation holds (e.g. Huffman Code)

$$
H(X) \leq L(X)<H(X)+1
$$

Optimization Approach:

Handling sequences of symbols as new symbols (new alphabet)
\rightarrow Enlarging the alphabet size
Original source: $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$
New source: merging of m symbols \rightarrow new alphabet with N^{m} symbols

$$
\mathcal{X}=\left\{x_{1} x_{1}, x_{2} x_{1}, \ldots, x_{N} x_{1}, x_{1} x_{2}, x_{2} x_{2}, \ldots, x_{N} x_{2}, \ldots x_{N} x_{N}\right\} \quad m=2
$$

Such a code extension is termed product code

$$
C^{m}\left(x_{1}, x_{2}, \ldots, x_{m}\right)=C\left(x_{1}\right) C\left(x_{2}\right) \ldots C\left(x_{m}\right)
$$

Code Extensions (2)

Alternative:

Calculating a "new" optimal code based on product probabilities $\quad p_{x_{1} x_{2}}=p_{x_{1}} p_{x_{2}}$
Assuming statistical independence:

$$
\begin{aligned}
& H\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum H\left(X_{i}\right)=n H(X) \\
& H(X) \leq L(X)<H(X)+\frac{1}{n}
\end{aligned}
$$

\rightarrow Lower bound given by entropy can be reached in principle
\rightarrow implementation cost increases exponentially

Disadvantage:

Size of code table increases exponentially
\rightarrow Practically not manageable anymore
\rightarrow gain shrinks asymptotically

Code Extensions: An Example

Original source:

$$
\begin{array}{ll}
\text { S1: (black) } & p_{s}=0.3 \rightarrow I(S 1)=1 \text { bit } \\
\text { S2: (white) } & p_{w}=0.7 \rightarrow I(S 2)=1 \text { bit }
\end{array}
$$

$\mathrm{H}=0,88 \mathrm{bit} /$ symbol
L = 1 bit / symbol

$$
C_{R}=H-L=0,12 \text { bit / symbol }
$$

New source: (assuming statistically independent symbols)

$$
\begin{array}{ll}
\text { S1: (black, black) } & p_{\mathrm{SS}}=0.09 \rightarrow \mathrm{I}(\mathrm{~S} 1)=3 \mathrm{bit} \\
\text { S2: (black, white) } & p_{\mathrm{Sw}}=0.21 \rightarrow \mathrm{I}(\mathrm{~S} 2)=3 \mathrm{bit} \\
\text { S3: (white, black) } & p_{\mathrm{ws}}=0.21 \rightarrow \mathrm{I}(\mathrm{~S} 3)=2 \text { bit } \\
\text { S4: (white, white) } & p_{\mathrm{ww}}=0.49 \rightarrow \mathrm{I}(\mathrm{~S} 4)=1 \text { bit }
\end{array}
$$

$\mathrm{H}=1,76$ bit $/ 2$ symbole $=0,88$ bit $/$ symbol
$\mathrm{L}=1,81$ bit $/ 2$ symbole $=0,91$ bit $/$ symbol

$$
C_{R}=H-L=0,03 \text { bit / symbol }
$$

Example FAX

Assuming statistical independence the average code length gets smaller by treating several (two) pixels as one symbol:

$$
\begin{array}{ll}
p(1)=0.95232 & H=0.19475 \text { bit } \\
p(0)=0.04768 & L=1 \text { bit }
\end{array}
$$

1. Code extension:

$$
\begin{array}{ll}
p(0) * p(0)=0,002273 & 3 \mathrm{bit} \\
p(0) * p(1)=0,045407 & 3 \mathrm{bit} \\
p(0) * p(1)=0,045407 & 2 \mathrm{bit} \\
p(1) * p(1)=0,906913 & 1 \mathrm{bit}
\end{array}
$$

$\mathrm{L}=1.14$ bit / 2 symbols $=0.57038$ bit / symbol

Conditional Entropy

Chain property:

$$
H(X, Y)=H(X)+H(Y / X)=H(Y)+H(X \mid Y)
$$

Mutual information:

$$
I(Y ; X)=H(Y) H(Y \mid X)=H(X) H(X \mid Y)=I(X ; Y)
$$

Statistical dependency:

Knowing the previously decoded symbol allows to deduce information about following symbol

$$
H(Y \mid X)=H(Y)-I(Y ; X) \leq H(Y)
$$

Symbols Sequences - Source with Memory

Example:

Source transmits words (ordered set of symbols)
frequency of appearance depends on joint probability

$$
p\left(x_{1}, x_{2}, x_{3}, \ldots, x_{K}\right)
$$

Modeling the words a random vector: $\quad \mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{K}\right\}$
Joint entropy (K=2)

$$
H(X, Y)=H(X)+H(Y)-I(X ; Y)
$$

Statistical dependency of symbols \rightarrow source with memory $I(X ; Y)>0$
\rightarrow Coding taking into account neighbored symbols (in time / in space)
\rightarrow taking into account the context

Example: FAX

Replacing the mean code length with actually measured joint probabilities

factor 17!

```
\(P(0,0)=0.039972 \quad p(0) * p(0)=0,002273\)
\(P(0,1)=0.007617 \quad p(0){ }^{*} p(1)=0,045407\)
\(P(1,0)=0.007798 \quad p(0) * p(1)=0,045407\)
\(P(1,1)=0.944613 \quad p(1) * p(1)=0,906913\)
```

Neighbored signal values are statistically dependent

$$
\begin{array}{lr}
\mathrm{H}=0,18576 \mathrm{bit} / \text { sample } & \mathrm{H}=0.19475 \mathrm{bit} / \text { sample } \\
& \\
\mathrm{P}(0,0)=2 \mathrm{bit} & \\
\mathrm{P}(1,0)=3 \mathrm{bit} & \rightarrow \mathrm{~L}=1,0708 \mathrm{bit} / 2 \text { sample } \\
\mathrm{P}(0,1)=3 \mathrm{bit} & \\
P(1,1)=1 \mathrm{bit} &
\end{array}
$$

Predictive Coding

different approach (traditional way) to take into account statistical dependency of random vectors for coding

Principle:

Predict symbol to be coded exploiting the knowledge of neighbored symbols causal predictor: \rightarrow Prediction is based on already coded (and known to the receiver) neighbored symbols.

Approach: $\quad e_{i}=x_{i}-\hat{x}_{i}, \quad \hat{x}_{i}=h\left(x_{i-1}, x_{i-2}, x_{i-3}, \ldots\right)$

Encoder

Decoder

Linear Prediction

General linear filter h:

$$
e[n]=\sum_{i=1}^{p} h_{i} x[n-i]
$$

Optimization criteria:
\rightarrow goal: minimizing the prediction error
\rightarrow criteria: MSE

$$
\mathrm{E}\left(e^{2}\right) \rightarrow \min
$$

Solving an equation system (normal equations / Yule-Walker equations)

$$
\sum_{i=1}^{p} h_{i} \varphi_{x x}(i-j)=\varphi_{x x}(j) \quad j=1 \ldots p
$$

Approach to solve the equations \rightarrow Levinson-Durban algorithm

DPCM (Differential Pulse Code Modulation)

Simplest form of prediction

Linear prediction:

$$
e[n]=x[n]-x[n-1]
$$

Problem:
Extending the range of the differential signal e
But:
With knowing the range of the original signal

$$
\begin{aligned}
& x[n]=(0,1) \\
& \rightarrow e[n]=(0,1) \rightarrow \text { (equal, unequal) } \\
& \\
& P(0)=0,983811 \\
& P(1)=0,016189 \\
& H=0,11946 \quad(P C M: H=0,18576)
\end{aligned}
$$

Context Dependent Coding

- Precondition: source symbols are statistically dependent
- Based on already sent symbols (thus known to the receiver) a „context" is created
- Coding of a symbol depending on its context
- Selecting different code tables dependent on the symbols in the context
- Code tables are matching the different symbol probabilities

Example: coding a FAX-image $\quad H(X \mid A, B, C, D) \quad(\mathrm{B}, \mathrm{D}) \quad \mathrm{p}(\mathrm{x}=0)$

$(0,0)$
$(0,1)$
$(1,1)$

Dynamic Statistics

Statistics changes during the encoding process

\rightarrow dynamically modifying the code being used for encoding

- Modifed table must be transmitted (reduces the gain of modified codes)
- decoder must be able to reconstruct the code based on received symbols
\rightarrow adaptive approaches

Huffman Code

- Permanently updating the symbol frequency in a table
- Recalculating the code table based on the symbol frequencies
- After each symbol
- After N symbols
-

Advantage:

higher compression efficiency
Disadvantage:
higher processing power and memory demand for recalculating
the code tables in the encoder as well as in the decoder

Arithmetic Coding

Approach:

each (infinitely long) sequence of binary digits represents a number $y \in[0,1$)

$$
\text { example: } 0,101101=1 / 2+0+1 / 8+1 / 16+0+1 / 64=45 / 64
$$

\rightarrow relative frequency sums up to 1
\rightarrow complete and non-overlapping partitioning of the interval $[0,1)$

Principle of intervals \rightarrow interval partitioning

$$
\begin{aligned}
& \lceil y\rceil_{N}=\lfloor y\rfloor_{N}+2^{-N} \\
& \lfloor y\rfloor_{N} \leq y<\lfloor y\rfloor_{N}+2^{-N}
\end{aligned}
$$

If the lower bound of a number (integer) is known, the upper bound of that number is also known.
\rightarrow every finite sequence of N binary digits uniquely defines an interval of size $2^{-\mathrm{N}}$

Arithmetic Encoding Procedure

Encoder working principle:

- partition the interval $[0,1)$ according to the probabilities of the symbols
- generate an interval partition using the incoming binary symnols
- the binray sequence of coded symbols representd to LOWER probability bound

Example:

Important: accumulated probabilities

Decoder

- reconstructs the lower and upper interval boundaries

Algorithm

Encoder:

Low $=0$
High $=1.0$
While input symbols available
get (symbol)
range = high - low;
high = low + range * high_range (symbol);
low = low + range * low_range (symbol)

Decoder:

Do
identify interval of present code number
output corresponding symbol
range = symbol_high - symbol_low
number -= symbol_low
number $/=$ range
While number $=0$;

End of while;
Output low

Example:

Symbol	Range	Low	High	Channel	Low	High	Range	Number	Symbol
--	--	0	1	--	0	1	1	0,554151	--
B	1	0,5	0,7	01	0,5		0,2	0,054151	B
A	0,2	0,5	0,6	1			0,5		A
C	0,1	0,507	0,6	00			0,3		
A	0,093	0,507	0,554 151	1			0,5		

Advantage of Arithmetic Coding

- Implementation complexity significantly higher than for Huffman-Codes
- No limitations with respect to the length of sequences to be encoded (instantaneous coding)
- Context dependent and adaptive coding extensions do not increase the computational complexity (except for calculating the context and dynamically adapt the context)
- Low coding latency
- High efficiency

$$
H \leq R<H+2 / m \quad \mathrm{M}: \text { sequence length }
$$

Different Coding Formats

- FAX group 3
- FAX group 4
- JBIG
- JPEG lossless
- Lempel-Ziv
- Zero-Tree Coding
- Context adaptive arithmetic coding
- MQ-Coder (used in JPEG2000)

MQ-Coder

Context dependent binary arithmetic codec

- Coding of binary symbols
- Based on their respective frequency in the coding process
- For each context probability table is tracked
- Updating the frequency using a finite-state engine

Peculiarity:

- Fast adaptation of symbol probabilities employed in coding

Approach:

- Assigns a context to each individual symbol
- adapt probability with each coded symbol

$$
P_{1}\left(c t x_{i}\right)=\left(n_{1}+1\right) /(N+2) \quad P_{1}\left(c t x_{1}\right)=\frac{n_{1}+1}{N+2}
$$

Part: 1.4
 Introduction to Quantization

Redundanz und Irrelevanz

- Analogues audio / video signals Information content \rightarrow infinite
- Digital signals
- Finite information content
- Representation > entropy
- Redundancy reduction
- representation ~ entropy
\rightarrow Lossless coding
- Irrelevance reduction
- Irrelevance reduction; subjectively not or barely noticeable distortions
- e.g. by quantization
\rightarrow Lossy coding
- Significant distortions
- Determined by application

Scalar Quantization

Consequences of Quantization

PDF - Entropy reduction

- Reduction of possible signal values
- Reduction of entropy
- Quantization results in loss of information
\rightarrow Information is not any more contained in the signal

Increase the signal distortion

Distortion:

$$
D=\mathrm{E}\{f(X-Y)\}
$$

Mean Square Error:
$D=\mathrm{E}\left\{(X-Y)^{2}\right\}$
SNR:
$\mathrm{SNR}=\log _{10} \frac{P_{x}}{D} \quad[d B]$
PSNR:

$$
\mathrm{PSNR}=\log _{10} \frac{\max P_{x}}{D} \quad[d B]
$$

Quantizer Design

Distortion depends on PDF of quantization errors signal:

$$
D=\sum_{i} p_{i} e_{i}^{2}
$$

Selecting the "optimal" replacement value (using an uniform interval partition) criteria: minimize the MSE
\rightarrow Llyod-Max Quantizer

$$
y_{k}=\frac{\sum_{i \in \Delta_{k}} x_{i} p_{i}}{\sum_{i \in \Delta_{k}} p_{i}}
$$

Replacement value in the center of mass of $p(x)$. of the area spanned over the interval

Quantiser Types

- Mid-thread
- Replacement value for value 0
- Mid raise
- No replacement value for 0

- Linear

- equally sized interval partitioning for the entire range
- Non-linear \rightarrow utilizing a compander
- Implementing a non-linear quantizer
- Optimal NL-Quantiser: each interval contributes approximately the same amont to the overal distrotion $\mathrm{Di}=1 / \mathrm{ND}$

Statistical Dependency and Joint Probability Distribution

Source: Stefan Simon, IENT RWTH Aachen 2000

$X_{1}, X 2$ are uncorrelated $\mathrm{E}\left\{X_{1}, X_{2}\right\}=m_{1} \cdot m_{2}=0$
$X_{1}, X 2$ Is statistically dependent
$p\left(x_{1}, x_{2}\right) \neq p_{X_{1}}\left(x_{1}\right) p_{X_{2}}\left(x_{2}\right)$

$X_{1}, X 2$ are uncorrelated
$\mathrm{E}\left\{X_{1}, X_{2}\right\}=m_{1} \cdot m_{2}=0$
$X_{1}, X 2$ are statistically independent
$p\left(x_{1}, x_{2}\right)=p_{X_{1}}\left(x_{1}\right) p_{X_{2}}\left(x_{2}\right)$

Vector Quantization (1)

cross: replacement vectors
lines: partitions
\rightarrow bad adaptation to joint density

Vector Quantization (2)

Partition optimized with LBG-Algorithm for 144 replacement vectors (criterion: MSE)
\rightarrow cells adjust to joint density distribution
\rightarrow improving the SNR by 1.96 dB with identical code book size

Aspects of Vector Quantization

Vector quantization assigns

- Individual regions,
- Represented by a single replacement vector,
- A binary code word.

All regions together assemble a nonuniform partition.

The code book design determines the optimal partition and identifies the optimal replacement vectors for each cell.

The vectors are collected in code books.

Summary

The basic for coding of 1D / 2D signals have been introduced and the following processing seps have been explained:

Sampling and aliasing
Quantization
Filtering
Transformation
Prediction
Entropy coding

The following sections introduce concrete coding concepts and algorithms for speech, audio, still images and video.

