**Compact Lecture** 

# Multimedia Coding – Methods & Applications

### Part 2: Coding of Speech and Audio

Dr. Klaus Illgner

Illgner/Rauschenbach: Multimedia Coding

Part 2: Introduction of Audio Coding

### **Overview**

- Motivation
- Introduction to speech coding
- Applications
  - AMR (speech)
- Introduction to audio coding
  - Psycho acoustics

### Some specific algorithms

- MP3 (Audio)
- AAC (Audio) AACPlus

### • What next?

- Stereo
- Dummy head
- Suround sound 5.1 and more
- Wave field synthesis

## **Motivation**

#### In principle "sound signals" should be simple to encode

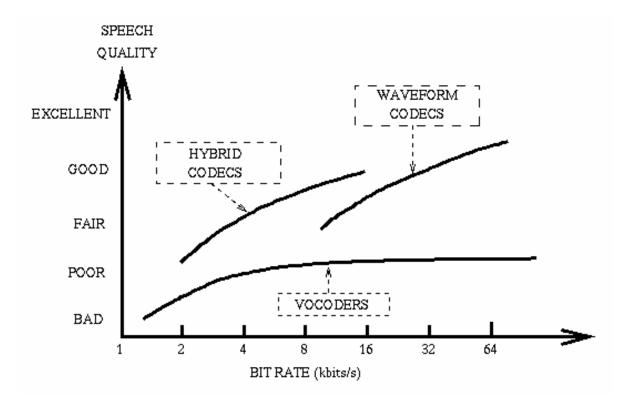
- (D)PCM + entropy coding
- Transform coding

#### ... or the other way round: "Why is audio coding a challenging problem?"

- Telephony in fixed networks → 32 .... 64 kbps
  Mobile voice communications → 2.4 kbps .... 9.6 kbps
  CD / SACD → 1.4 Mbps ... 4.6 Mbps (stereo)
- → transmission capacity not sufficient (GSM)
- $\rightarrow$  very high quality demand (SACD, 5.1 surround sound)

#### The "sound world" splits for encoding into 2 quite different environments:

- Speech coding
- Audio coding


For coding speech is not audio

- Traditional approaches regard speech as one dimensional non-stationary signal
  - Waveform Coder
- More recent approaches take the generation of human voice into account
  - $\rightarrow$  Modeling the voice generation (transmitter oriented approach)
  - → Vocoder / LPC
- Current codecs mostly follow an hybrid concept
  - $\rightarrow$  CELP
- Quality evaluation take place always on the basis of <u>subjective voice recognition</u> <u>tests</u>

### **Overview of Standards for Speech Encoding**

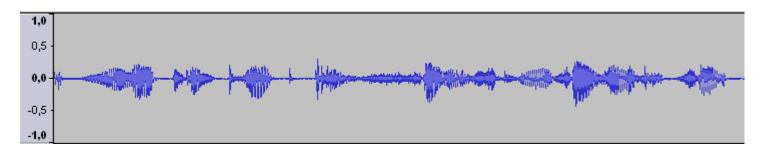
| G.711       | PCM for speech                                                | 8 kHz, sample    | 64 kbps                     | 1972 |
|-------------|---------------------------------------------------------------|------------------|-----------------------------|------|
| G.721       | ADPCM for speech $\rightarrow$ G.726                          | 8 kHz, sample    | 32 kbps                     | 1984 |
| G.722       | Wideband speech (SB-ADPCM)                                    | 16 kHz, sample   | 64 (56, 48) kbps            | 1988 |
| G.722.1     | Wideband speech                                               | 16 kHz, 20msec   | 24, 32 kbps                 | 1999 |
| G.723       | Extension of G.721 → G.,726                                   | 8 kHz, sample    | 24, 40 kbps                 | 1991 |
| G.723.1     | Dual rate speech codec (ACELP)                                | 8 kHz, 30 msec   | 5.6 / 6.3 kbps              | 1995 |
| G.726       | ADPCM speech coding                                           | 8 kHz, sample    | 16, 24, 32, 40 kbps         | 1984 |
| G.727       | ADPCM mit 5, 4, 3, 2, bit                                     | , sample         | 16, 24, 32, 40 kbps         |      |
| G.728       | Low delay CELP                                                | 8 kHz,           | 16 kbps                     | 1992 |
| G.729       | Conjugate structure CELP                                      | 8 kHz, 10 msec   | 8 kbps, 6.4 / 11.8 kbps     | 1995 |
| GSM 06.10   | Full rate (FR) speech coding (RPE-LTP)                        | 8 kHz, 22.5 msec | 13 kbps                     | 1987 |
| GSM 06.20   | Half rate (HR) based on VSELP – vector sum excited prediction | 8 kHz            | 5.6 kbps                    | 1992 |
| GSM 06.60   | EFR – Algebraic CELP (ACELP)                                  |                  | 12.2. kbps                  | 1996 |
| 3GPP 126071 | AMR (mandatory for UMTS) – based on ACELP                     |                  | 4.75 – 12.2 kbps (8 stufen) | 1999 |
| 3GPP        | AMR-WB $\rightarrow$ (G.722.2??); based on ACELP              | 16 kHz, 20 msec  | 6.6 – 23.85kbps (9 Stufen)  | 2001 |

### **Qualitative Comparison**



#### **Evaluation employs**

- Speech intelligibility test and
- Subjective listening tests under standardized conditions


### Speech Coding based on <u>Waveform Codecs</u>

For sufficient speech intelligibility

- Spectrum can be limited to 300- 3400 Hz (compare analogue telephone)
  - $\rightarrow$  sampling rate of 8kHz
- Dynamic range of approximately 40 dB sufficient (theoretically)
  - $\rightarrow$  8 bit linear quantization (PCM)

 $\rightarrow$  data rate of 64 kbps (enables transmission of speech over a single 64 kbps ISDNchannel)

#### **Approach: PCM**: just sample and quantize the signal (8kHz, 8bit)

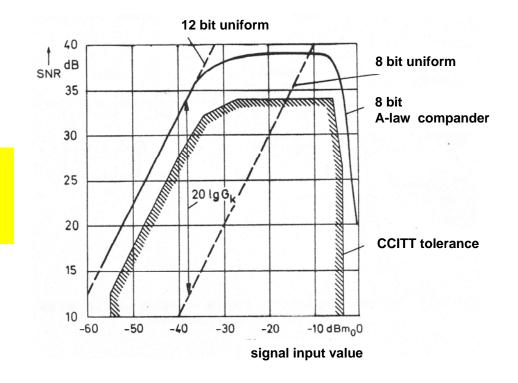


Challenge: signal characteristics is strongly non-stationary

## PCM Approach (G.711 – 1972)

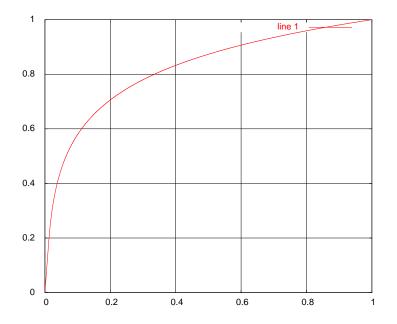
#### But: listening trials revealed an insufficient speech intelligibility

- $\rightarrow$  High dynamics of signal power
- → sampling (linear quantization) requires 12bit
- → level dependent SNR
   (→ has implications on intelligibility)


#### **Solution:**

non-linear quantization, implemented via a compander (A-lax / u-law in US)

Bit assignment 1 bit -- sign


```
3 bit -- exponent
```

4 bit – amplitude

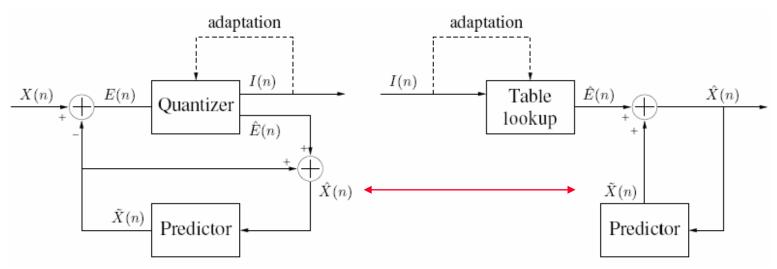


#### Resulting 8bit signal comparable to 12bit linear PCM signal

$$y = \frac{Ax}{1+\ln(A)}, \quad 0 \le x < 1/A$$
$$y = \frac{1+\ln(Ax)}{1+\ln(A)}, \quad 1/A \le x \le 1$$
$$x = s/S_{max}, \quad A = 87,56$$
$$y = \text{sgn}(x)\frac{\log(1+\mu|x|)}{\log(1+\mu)}, \quad x \le 1$$
$$\mu = 100,255$$



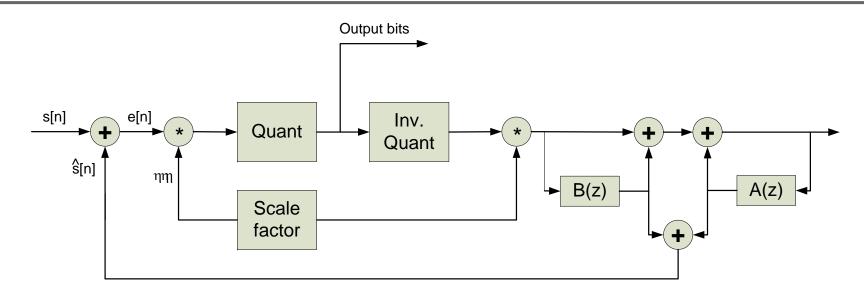
## ADPCM → G.726 (G.721)


• Input: u-law 16 bit PCM

#### Processing of input signal in blocks

- Length: 20 ms  $\rightarrow$  160 samples at 8kHz sampling frequency
- 4bit non-uniform quantizer (15 steps); adaptive

#### • ADPCM (adaptive differential)


- −  $G.721 \rightarrow 32$ kbps (original), later extension for 26, 24, 40 kbps  $\rightarrow$  now termed G.726
- at 32kbps almost no difference to original
- Based on backward prediction (no side information, prediction utilizes <u>coded signal values</u>)



Illgner/Rauschenbach: Multimedia Coding

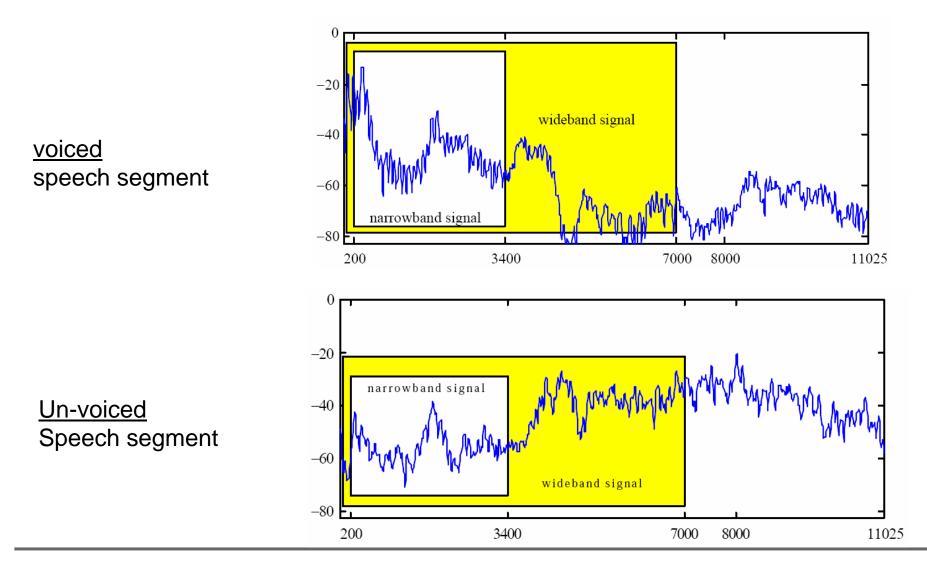
Part 2: Introduction of Audio Coding

### **ADPCM** cont.



 $e[n] = (s[n] - \hat{s}[n])/\alpha$ 

Adapting the fixed quantizer to varying input amplitudes


 $\alpha_n > \alpha_{n-1}$  for e[n] > e[n-1]

applied e.g. in the DECT-Standard

Filter: A(z)  $\rightarrow$  2 tap FIR B(z)  $\rightarrow$  6 tap FIR

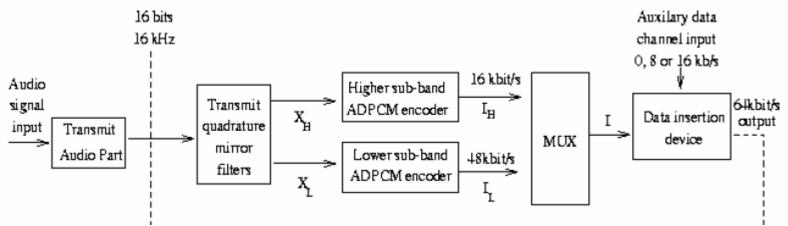
Variants: IAM ADOCM, MS ADOCM

### Are 8kHz Sampling Frequency Sufficient?



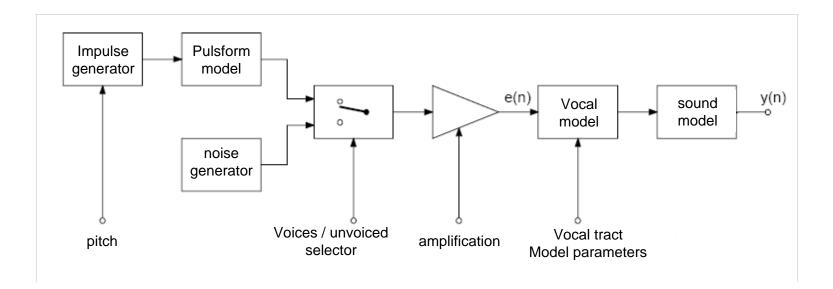
Illgner/Rauschenbach: Multimedia Coding

Part 2: Introduction of Audio Coding


2 - 12

#### Improving the intelligibility by:

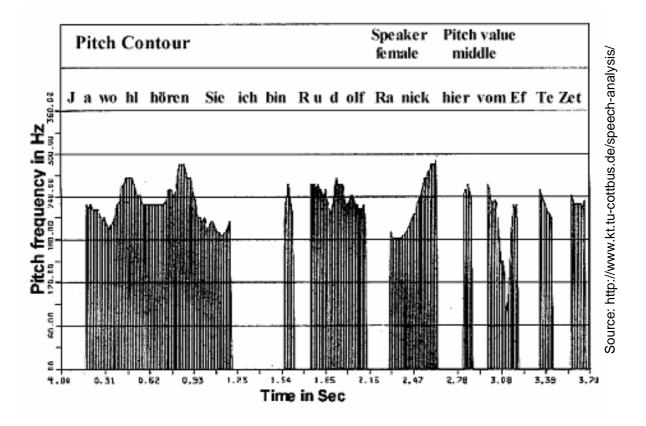
- Extending the transmitted signal spectrum to 50 Hz -- 7 kHz
- Increasing correspondingly the sampling rate to 16 kHz
- Required data rate results in 48, 56, 64 kbps (LB: 4 bit/sample, 5 bit, 6 bit)


### Processing approach:

- Decomposition with QMF filter bank (24 coefficients  $\rightarrow$  3 ms delay)
  - channel 1 (LB): 0-4 kHz channel 2 (HB): 4-7 kHz
- Separately encoded with ADPCM algorithm (LB: 6bit/sample; HB: 2 bit/sample)



Illgner/Rauschenbach: Multimedia Coding


### **Model of Human Speech Generation**



#### Model of the vocal tract:

- $\rightarrow$  tube model (tubes of different diameter connected to each other)
- $\rightarrow$  Filter models resonance characteristics of mouth, throat, and nose cavity

### Pitch

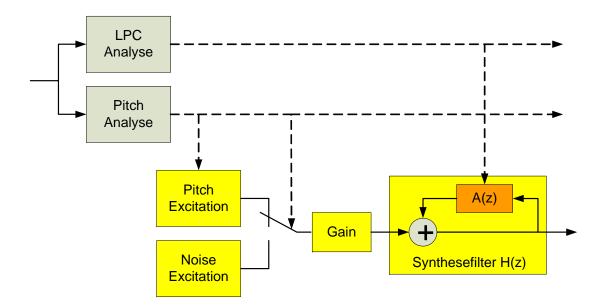


Different approaches for estimating the pitch frequency e.g. based on the auto-correlation function

## **Model-based Coding**

#### Takes the human vocal tract as a reference $\rightarrow$ creating a model

#### Estimating and coding the model parameters


- Voiced sounds
  - $\odot$  Characterized as "pitch"  $\rightarrow$  excitation of the vocal cords with the fundamental frequency
  - men: 50 250 Hz, women 120 500 Hz
- Unvoiced sounds:
  - Excitation with noise
- Formant (sound model):
  - Maximum of the envelop of the power density spectrum
  - $\odot~$  3 lowest formant are always in the range of ~ 300- 3400 Hz
  - Sufficient for characterizing speech

#### **Realization example: Vocoder**

- Time varying filter, excited with pulse trains (pitch) or with noise
- Updating the pitch every 10-20 ms
- Works down to about 2.4 kbps (applied primarily for very low rate coding of <0.5 bit /sample)
- Advantage: speech intelligibility even at very low bit rates
- drawback: speech does not sound naturally, higher rates improve quality only marginally

### LPC-Vocoder

LPC -- Linear predictive coding
 → Estimating the similarity of neighbored samples (Short term prediction)



Crucial is the LPC analysis and the design of the synthesis filter

#### Excitation parameters are typically <u>not constant</u>

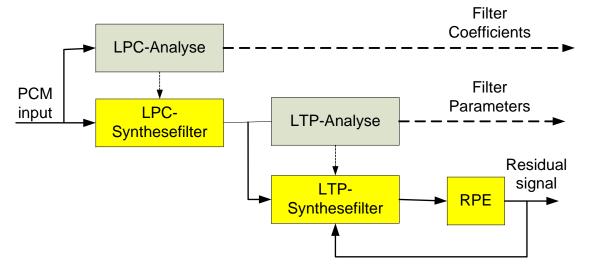
- $\rightarrow$  block-based processing assuming constant parameters within a block
- → block length typically 10—30 ms (standards: 20 msec)

Calculating the parameters of the synthesis filter H(z) via the prediction filter A(z)

$$A(z) = 1 - \sum_{i} a_i z^{-i}$$
$$\hat{x}[n] = \sum_{i=1}^{p} a_i x[n-i]$$

Prediction error filter  $\rightarrow$  linear FIR filter, typically of order p=10 Calculating the coefficients, e.g. using the MSE criteria

Synthesis filter is the inverse prediction filter (Careful with roots) Outputs the synthesized speech signal when excited with white noise and pitch  $H(z) = \frac{1}{A(z)}$ 


## Speech Coding in GSM $\rightarrow$ RELP

#### **Characteristics:**

- Sampling frequency 8kHz
- 13 bit linear
- Partitioning in frames 20 ms  $\rightarrow$  160 samples per frame

#### Algorithmic features:

- <u>RPE (residual pulse excitation)</u> / LTP LPC coding  $\rightarrow$  13 kbps (260bit / frame)
- Detecting speech pause and fill it with comfort noise
- Adding forward error correction  $\rightarrow$  adds up to 22,8 kbps



#### Illgner/Rauschenbach: Multimedia Coding

## System Diagram GSM Speech Coder

#### • LPC: linear prediction, 8 Tap filter in GSM

- Modeling the vocal and nasal tract
- Levinson-Durban algorithm for calculating the coefficients
- Coefficients have the meaning of reflection coefficients (pipe model)
- Excitation by model signals voiced / unvoiced
- 36 bit / 160 samples; logarithmic quantizer (6, 6, 5, 5, 4, 4, 3, 3) bit

### • LTP : Long term prediction

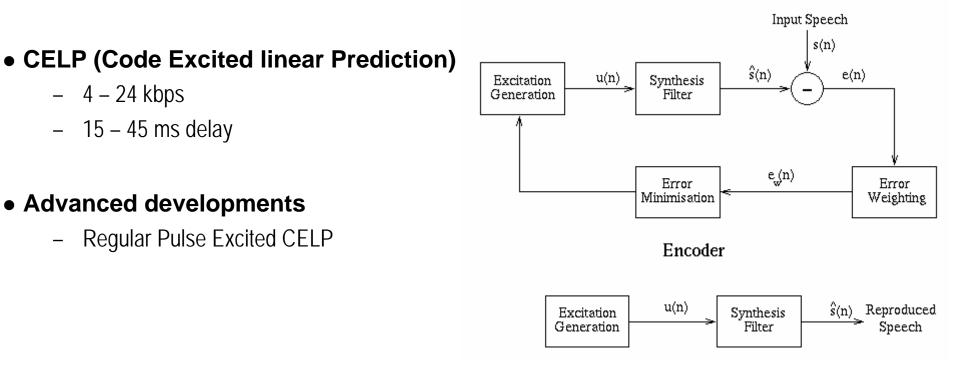
- Excitation by RPE residual pulse excitation
- Output: model signals voiced / unvoiced
- 4 x 40sample frames; calculating time shift N0 and amplification b
- calculate RPE(block n-1[n-N0}) \* b and calculate difference; transmit N0, b with 2+7 bit

#### • RPE: Residual Pulse Excitation

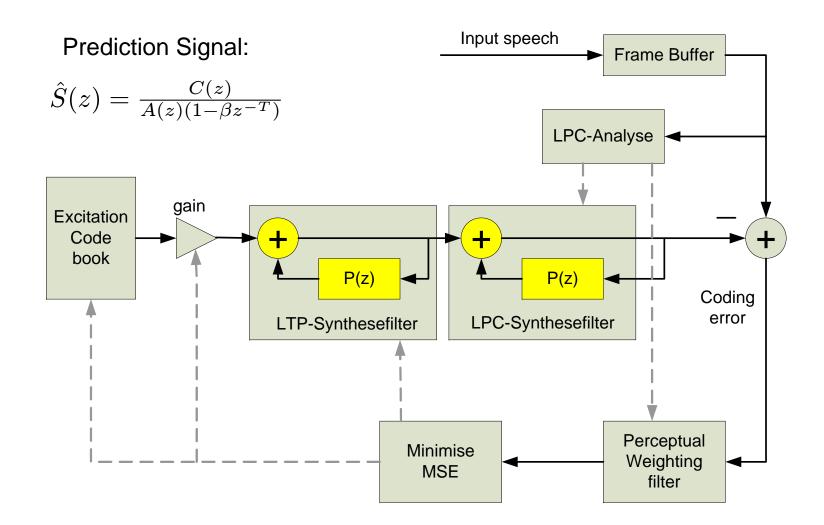
- Linear low pass filter (FIR) of order 10
- Decomposition in 3 polyphase bands
- Encode subband with most significant energy
- Select coefficient with maximal energy for normalization
- Linear quantization of 13 coefficients with 3 bit per coefficient

#### $\rightarrow$ 1.8 kpbs

Part 2: Introduction of Audio Coding


 $\rightarrow$  1.8 kpbs

## **Hybrid Coder**


#### combination of vocoder and waveform coder

#### • System commonly referred to: "Analysis by Synthesis"-Coder

- Synthesis = LPC Vocoder
- Analysis filter



### **CELP System Diagram**



### **Excitation Code Book**

#### • Modeling the error signal (Excitation Signal)

– MPE (multi-pulse excitation):

exciting the filter with pulse train of variable amplitude and frequency

- RPE (regular pulse excitation)
   fixed distance between pulses variable amplitude and position of first pulse
- CELP (code excited linear predictive)
   vector code book with excitation signals
   e.g. 10 bit for index + 5 bit for amplitude → 15 bit compared to 47 bit for GSM RPE

#### CELP

#### Each entry consists of 60 samples ( $\rightarrow$ 7.5 msec) [30 msec frames]

#### • Adaptive Codebook (long term prediction)

- Delayed versions of earlier excitation signals, multiplied by an amplification value

#### Statistical code book

- 1092 random values {-1, 0, 1}
- Start reading out from this "vector" from the position indicated by the (transmitted) index k
- distance is 2 x k  $\rightarrow$  9bit

### **CELP: Additional Components**

#### • LTP: Long term prediction

- Estimating the pitch frequency
- Exploiting longer correlations

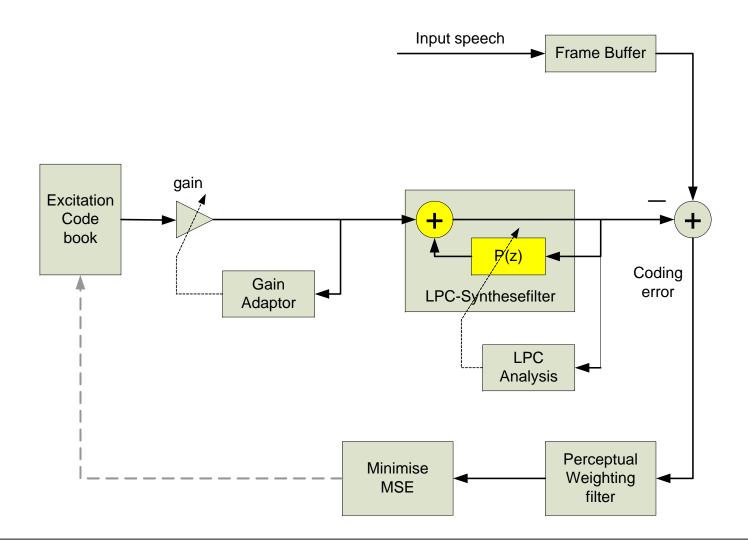
$$e[n] = \beta e[n-T]$$

### • "Noise Shaping" in the filter "perceptual error weighting"

- Moving the error to formants of higher energy

$$W(z) = \frac{A(z/\gamma_1)}{A(z-\gamma_2)}$$

$$\gamma_1 \approx 0.9, \quad \gamma_2 \approx 0.6$$


### **Characteristics:**

- 5 msec delay results from small block sizes (5 samples)
- 8 kHz sampling rate (16 bit linear PCM)
- speech quality comparable to 32 kbps ADPCM

### Algorithm: Backward adaptive CELP

- Backward LPC analysis with LPC filter of order 50; updating coefficients every 2,5 msec → short term predictor only
- Backward adaptive linear prediction  $\rightarrow$  low delay
- Backward controlled gain-scaled vector quantization for excitation signal
- AbS- code book search of CELP coder
- Adaptive post-filter
- Excitation vector composed of 5 samples
- Decoder contains "post"-filter to improve quality

### **LD-CELP System Diagram**

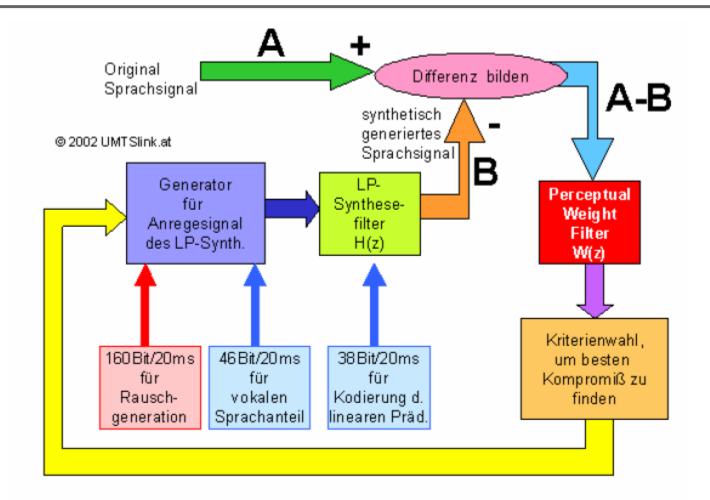


Illgner/Rauschenbach: Multimedia Coding

## **GSM AMR (Adaptive Multirate)**

#### **Motivation:**

#### Adapting the code rate according to the channel conditions (error rate)


#### **Characteristics:**

- Grounds on the ACELP (10tap LPC-Filter)
- 20 ms frames
- Open-loop pitch estimation every 10 msec
- 2 code books  $\rightarrow$  every 5 msec recalculation and updating the code parameters
  - Fixed code book (FCB)
  - Adaptive code book (ACB)
- Code rates: 4,75 / 5,15 / 5.90 / 6,70 / 7,40 / 7,95 / 10,20 / 12,20 kbps

#### **Exploits also**

- Voice activity detection (VAD)
- Discontinuous transmission (DTX)
- $\rightarrow$  stopping the transmission in speech breaks

## **AMR System Diagram**



#### Structure identical to CELP

Part 2: Introduction of Audio Coding

## 3GPP AMR-WB → ITU-T G.722.2

#### Codecs takes into account higher naturalness of high bandwidth speech

#### **Characteristics:**

- 6.6 23.85 kbps
- 20 msec frames  $\rightarrow$  320 samples / frame
- Calculating the inner excitation parameters every 5 msec (4x per speech frame)
- ACELP (Algebraic Code Excitation Linear prediction)  $\rightarrow$  similar to G.729, GSM EFR
- 2 frequency bands: 50- 6400 / 6400 7000
- LPC; LTP, samples at 12,8 kHz
- LB: ACELP
- HB: coding based on low band LB → calculation of a gain factors (in the encoder) decoder utilizes a 16kHz random excitation signal, applying a synthesis filter with parameters derived from the LB-signal

#### Components

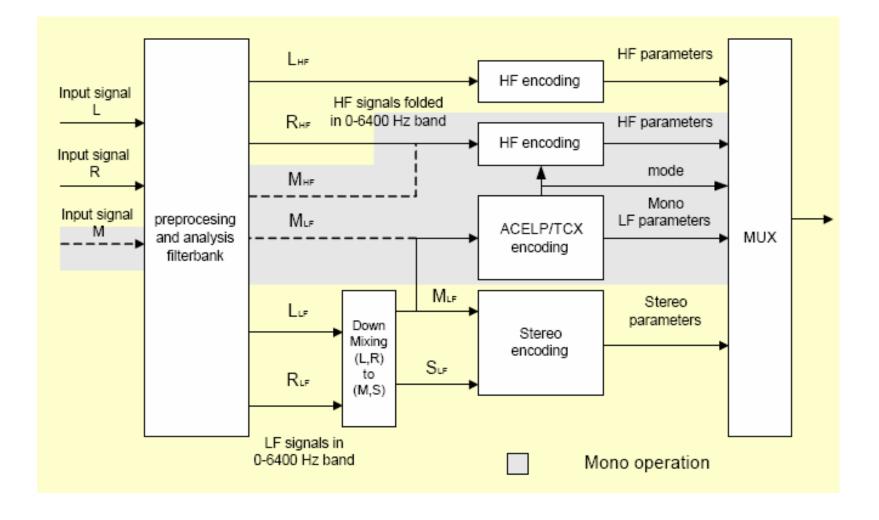
- Discontinuous transmission (DTX)
- Voice activity detection (VAD)
- Comfort noise generation (CNG)

#### Applications

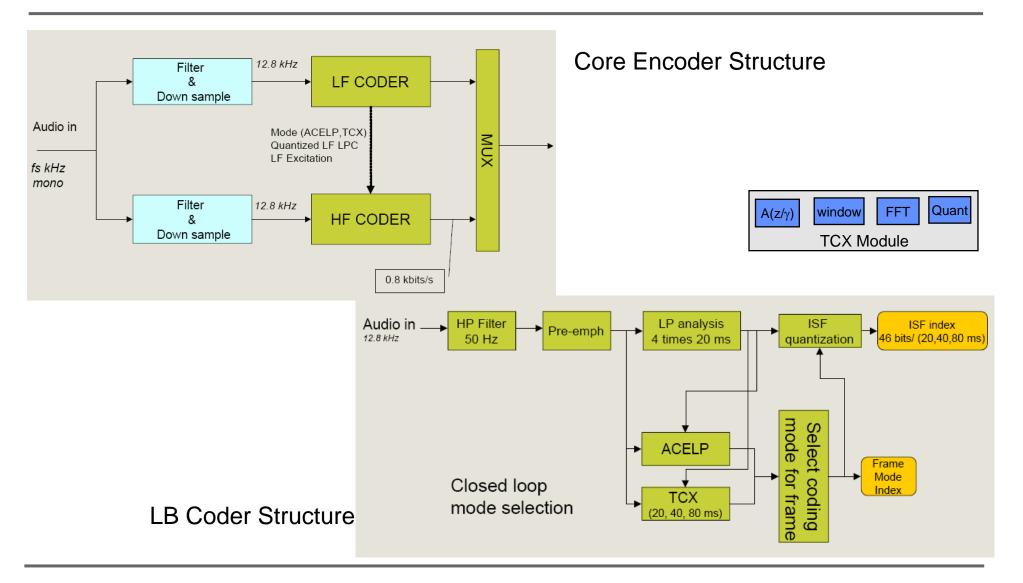
- Utilization of the same codec for wireline and wireless communications (no transcoding at transition gateway)
- Very robust against transmission errors (multirate  $\rightarrow$  adaptive bit assignment for source and channel coding)
- Not suitable for music

### **3GPP AMR-WB+**

### Suitable for speech <u>and</u> audio (competition to AAC+ primarily in the low bit rate range


#### features:

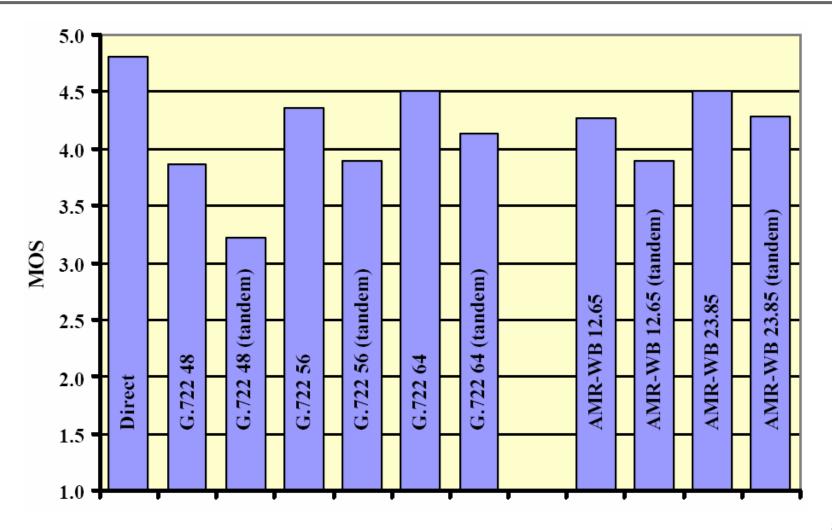
- Sampling rates: 16, 24, 48 kHz
- Code rates: 9.6 23.2 kbps


#### Tools:

- Multimode ACELP (AMR-WB),
- TCX (Transform Coded Excitation)  $\rightarrow$  Coding of audio signals
- Coding additional band with higher spectral components (HF-band extension)
- Over-clocking

### **Encoder Architecture**




### **Encoder Details**



Illgner/Rauschenbach: Multimedia Coding

Part 2: Introduction of Audio Coding

### **Comparison of Speech Coding Schemes**



Source: VoiceAge

### **Fundamentals of Audio Coding**

Demanding an unaltered and original listening experience

- Relevant spectral range: 20-20kHz
- Quantization with 16bit / sample
  - → increased dynamic range (96 dB) (assuming a uniform PDF)

CD "coding: 44.1 kHz, stereo, 16bit / sample

- reference since its introduction 1988
- extensions:  $\rightarrow$  SACD: 24bit, 96kHz sampling frequency

When talking about audio coding, one needs to differentiate between

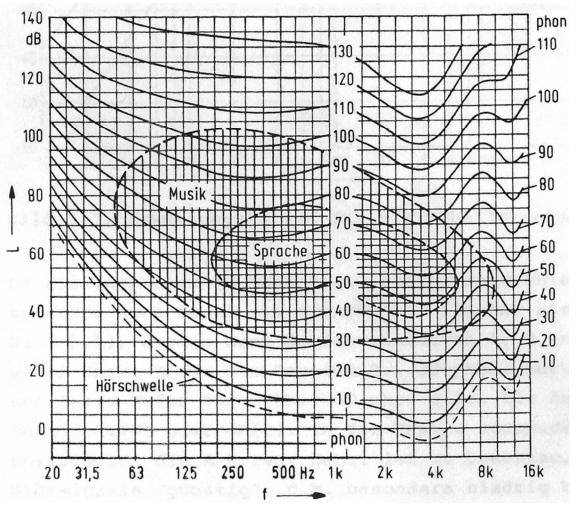
- Coding scheme
- File format
- player software for playback

### **Relevant Audio Coding Schemes**

Common Audio Coding standards:

- PCM as used for CD / SACD
- MPEG-1 ISO/ IEC 11172-3 (Nov 1992)
- MPEG-2 ISO/IEC 13818-3 (Nov 1994, 1997)
- MPEG-4 AAC
- AACPlus, HE-AAC
- Dolby Digital (formerly known as AC3)
- DTS (Digital Theatre System)
- AC97
- ATRAC (Sony)

Related Terms:


- 5.1 Multichannel
- DOLBY noise reduction versus Dolby Coding
- Dolby E production format for surround sound signals

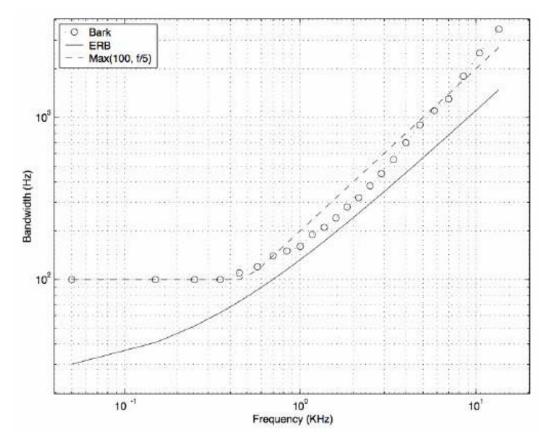
### **Psycho-Acoustics**

- To improve coding efficiency without sacrificing quality
- → Take into account psychoacoustics characteristics of the humans ear
- → results in receiver oriented coding approach
- → no further characterization of the transmitter

Loudness ~

Signal power (sum of squared amplitudes)

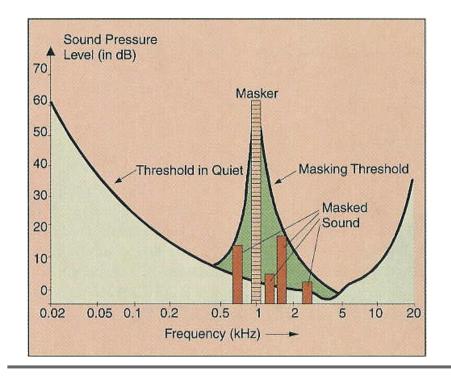


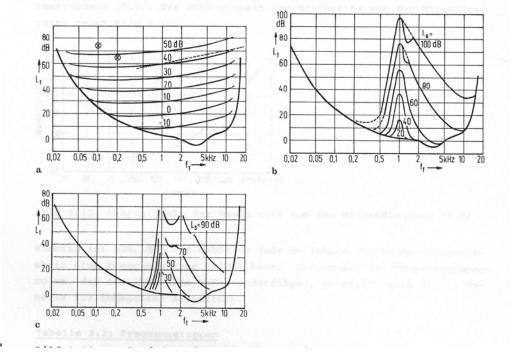

# **Critical Bands**

### **Definition:**

- Minimum frequency difference to differentiate to sinusoids
- Difference depends on the pitch

Ear Characteristics:

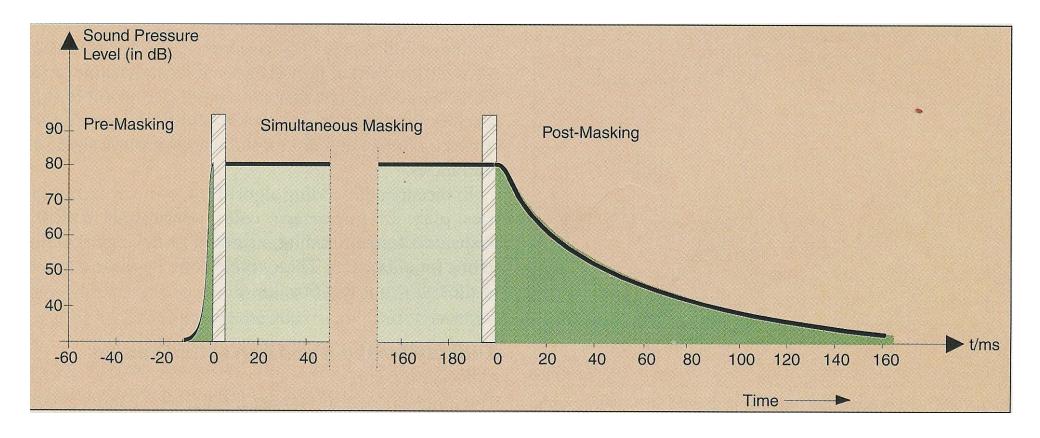

- Partitioning of audible spectral range into 25 groups
- Ear works as a filter bank (third octave band filters)




ERB: Equivalent rectangular bandwidth

## Masking

- amplitude: loud ton masks muted ones
- time: a muted ton immediately after a loud tone can not be heard for some time
- frequency: a loud sinusoid of a specific frequency masks sinusoids of smaller amplitude with a frequency in the neighborhood of the masking tone

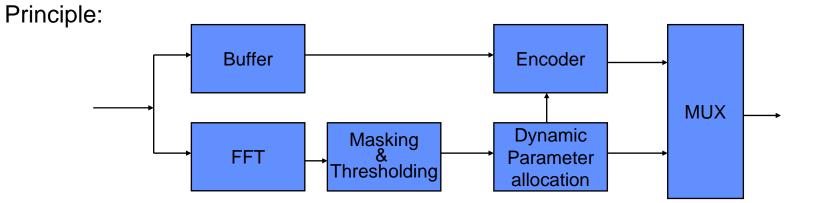





Illgner/Rauschenbach: Multimedia Coding

#### Part 2: Introduction of Audio Coding

# Masking in Time




#### Illgner/Rauschenbach: Multimedia Coding

Part 2: Introduction of Audio Coding

# **MPEG-1** Audio

- First high quality audio compression standard 1992 (ISO/IEC 11172-3)
- employs a psycho-acoustical model of the human hearing
  - MUSICAM-Approach (Masking pattern adapted Universal Subband Integrated Coding And Multiplexing)
  - and ASPEC (*Adaptive Spectral Perceptual Entropy Coding*)
- Standard specifies the decoder  $\rightarrow$  leaving room for individual optimization at the encoder
- Supports sampling frequencies 32 kHz, 44.1 kHz, 48 kHz
- Operation modes: mono, two channels (e.g. multi lingual), stereo (ind. channels), joint stereo
- Average bit rate for transparent audio between 128 and 384 kbps



# **MPEG-1** Audio Layer

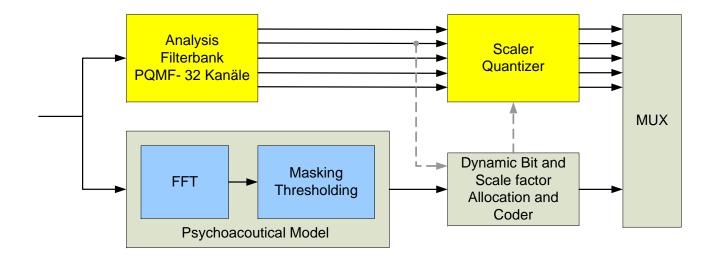
#### 3 Layer (hierarchical):

#### Increasing complexity, delay and quality (all are rated as perceptually lossless)

#### Layer 1: CD quality @ 384 kbps stereo

- 32 subbands, 511tap-Filter (PQMF)
- 8 msec frame (12 x 32 = 384 samples / frame)
- DCC (Digital Compact Cassette)

#### Layer 2: CD quality @192 - 256 kbps / stereo


- 32 subbands, 511Tap Filter (PQMF)
- 24 msec frame, (3 x 12 x 32 = 1152 samples/ frame)
- Digital Radio (DAB)

### Layer 3: CD @ 112 - 128 kbps / stereo

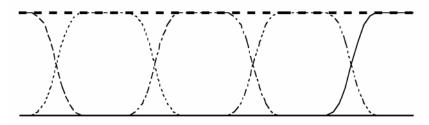
- Layer II + ASPEC components
- MP3-Player / Podcast etc.

# **Encoder Characteristics (Layer 1 and Layer 2)**

- Decomposition into 32 subbands (polyphase filterbank)
  - Layer 1: processing 12 samples per subband as one unit
  - Layer 2: processing 3 x 12 samples per subband as one unit
- Quantization and coding of each spectral coefficient such that coding error is below the masking threshold
  - Individually determining scaling value and number of quantizer bits per block



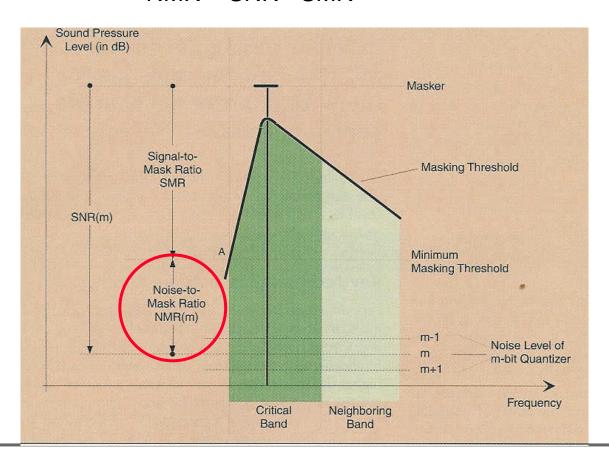
# **MPEG-1** Subband Decomposition (Normative)


Filter bank implementation based on prototype-filter

$$h_i[n] = h[n] \cos\left(\frac{2k-1}{2 \cdot 32} + \varphi[k]\right)$$

Decomposition into 32 equally spaced subbands

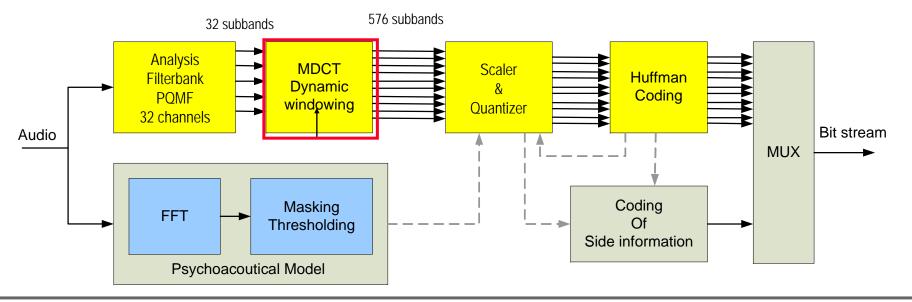
Prototype-Filter (48kHz sampling rate): 3dB band width  $\rightarrow$  375 Hz, center frequency: (2n+1) \* 375


**Problem**: decomposition does not match the critical band partition 48 kHz sampling frequency  $\rightarrow$  band width = 750Hz



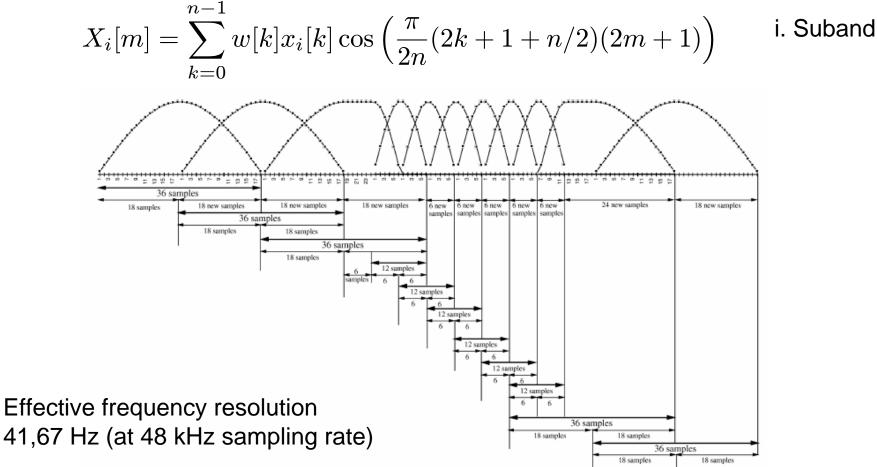
 $\rightarrow$  Frequency bands overlap but still a perfect reconstruction is possible

# **Bit Allocation**


- Set of linear mid-thread quantizer, variable number per subband
- Iterative selection of "optimal" quantizer considering SNR and masking NMR = SNR - SMR



# **MPEG-1** Layer 3


#### **Essential Features:**

- switched hybrid filter bank
  - PQMF followed by 6tap / 18tap MDCT (modified DCT) with 50% overlap
- improved pre-echo controller (caused by spreading quantization errors over a frame)
- non-linear quantization
- entropy coding utilizes run-length and Huffman codes
- iterative "analysis-by-synthesis" optimization of bit allocation
- bit buffer ("bit reservoir")



# **Dynamic Windows and MDCT**

MDCT



# **MPEG-2** Audio

#### 2 driving motivations

- Improve coding efficiency
- Add functionality for multi-channel

### • BC: Backward compatible multi channel extensions (Nov 1994)

- designed for DVD (lost in the market against Dolby Digital)
- Backward compatible as MPEG-1 decoder can generate 2.0 Signals from 5.1 multi-channel signals
- Forward compatible as MPEG.2 decoders can decode MPEG-1 mono and stereo signals

### • LSF: low sampling frequency Extension

- 16, 22.5, 24 kHz sampling rates
- Extends MPEG-1 down to 8 kbps

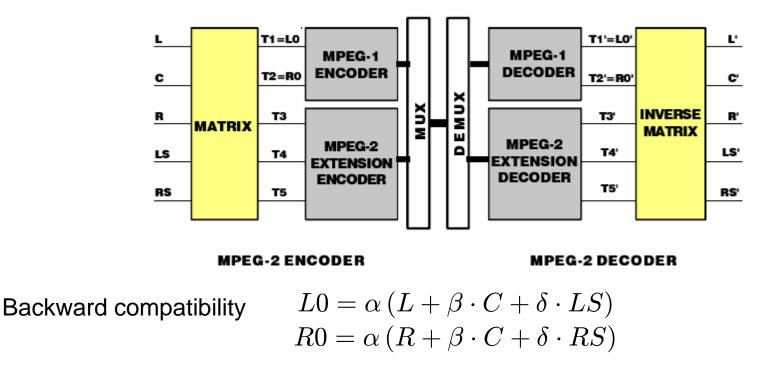
### • AAC: advanced audio coding scheme (1997)

- Not backward compatible
- Reaches at ~96kpbs the quality of MP3 at 128 kpbs

# **Multi-Channel Improves Room Experience**

| channel | configuration | description                     |                | center (C)       |                 |
|---------|---------------|---------------------------------|----------------|------------------|-----------------|
| 1       | 1/0 (+1)      | Center (Mono)                   | left (L)       | $\bigtriangleup$ | right (R)       |
| 2       | 2/0 (+1)      | L,R (Stereo)                    | V              |                  |                 |
| 3       | 3/0 (+1)      | L,R,Center                      |                | $\bigcirc$       |                 |
| 4       | 3/1 (+1)      | L,R,Center, mono                | -              | $\bigcirc$       |                 |
| 5       | 3/2 (+1)      | L,R,C,Surround L,<br>Surround R |                |                  |                 |
|         |               |                                 | left side (Ls) |                  | right side (Rs) |

Some multi-channel configurations


Subwoofer (low frequency enhancement) can be added to each configuration (up to 120 Hz) 3/2 + 1 is commonly referred to as 5.1 multi-channel

#### Aspects for processing:

- Down mix for backward compatible reduction of output signals (loudspeakers)
- efficient coding by utilizing correlation between channels

# **MPEG-2** Approach to Multi-channel Support

Down mix matrix is the key feature of MPEG-2 multi channel audio



MPEG-2 supports many different matrices, including time dependent ones

$$\alpha = \frac{1}{1+\sqrt{2}}; \beta = \delta = \sqrt{2}$$

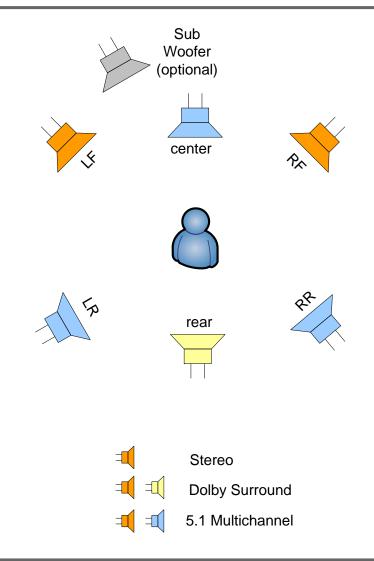
# **Coding of Stereo / Multichannel Signals**

### Intensity stereo coding

- Transmission of a combination of left and right signal
- Directivity information is part of the scaling factor
- Middle / Side stereo coding
  - Transmitting normalized sum and differential signals
  - MPEG-2 5.1 allows bit rates between 384 and 640 kpbs

#### Market environment:

- Currently employed for digital radio over DVB-S (in Germany)
- multi-channel radio in DAB possible (trials)


# **Other "Suround-Sound" Algorithms**

#### • Dolby Surround:

- No complete reconstruction of multi-channel possible
  - Complete information only in 2-channel stereo signal
  - as matrix signal available
- can also be synthesized from stereo signal

#### • 5.1 Multi-channel Solutions

- Dolby Digital (AC3)
  - Joint coding of up to 5 channels in a single bitstream
  - Not backwards compatible to MPEGr
  - Very high market penetration
- DTS (Digital Theatre System)
  - Proprietary coding scheme (5 independent channels)
  - Devices only for DVD in the market (no broadcast)
- MPEG Surround (matrix approach)
  - Backward compatible extension of MPEG-1 audio
- Other schemes (matrix based)
  - Dolby Pro Logic II / SRS Circle Surround / Logic 7



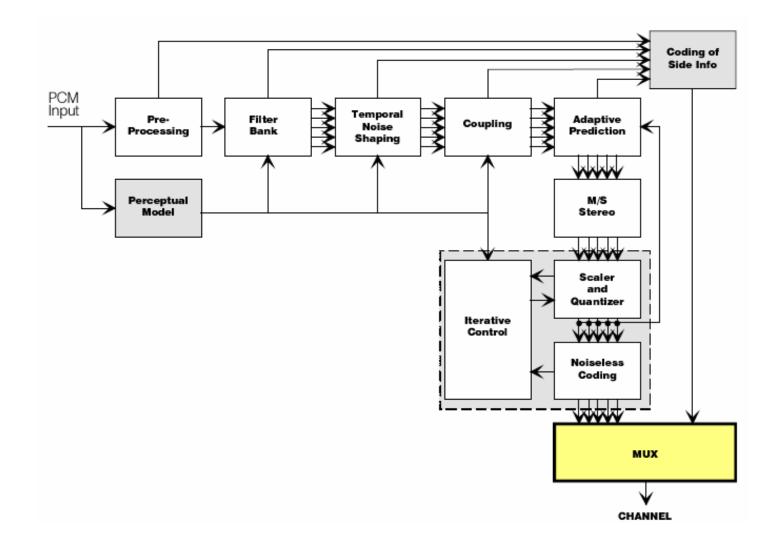
#### Illgner/Rauschenbach: Multimedia Coding

#### Part 2: Introduction of Audio Coding

# MPEG-2 AAC (→ MPEG-2 NBC)

### • MPEG-4, completed 1997

– ITU-R indistinguishable audio quality per stereo channel at 128kbps


### • Profile:

- Main: all tools except "gain control module"  $\rightarrow$  maximum quality
- Low complexity: no "prediction tool", reduced complexity of noise shaping tools
- Sample rate scalable profile: low complexity profile + gain control tool  $\rightarrow$  encoder of lowest complexity

### Extends MP3 with tools

- Temporal noise shaping
- Backward adaptive linear prediction
- Enhanced joint stereo coding
- Sampling: 8 96 kHz,
- Bit rates: 16 576 kbps
- 1 48 audio channels
- Delay: 24kHz@ 24 kbps  $\rightarrow$  110 ms + 210 ms bit buffer

# **MPEG-2 AAC Struktur**



# **AAC Features**

### • Filterbank:

- MDCT as perfect reconstructing filter bank (approacht: Time Domain Aliasing Cancellation)
- length: 2048 samples, 50% overlap  $\rightarrow$  1024 "new" samples  $\rightarrow$  23.4 Hz frequency resolution
- NO preceding PQMF

### • Window function

- Adaptive length ranging from 1024 to 128 (frequency resolution versus PRE-Echo cancellation)
- Sinusoid or Kaiser-Bessel window

### Non-linear quantiser

### • Noise Shaping ("hiding" of quantizer noise)

- Adapting the quantizer step sizes by means of a scaling factor

### • Noiseless coding

### • Temporal Noise Shaping

- Shifting quantizer errors in time
- Forward prediction in the spectral domain

### Prediction

Predicting spectral coefficients from previous frame

# **MPEG-4 Audio Coding**

### • Part 1: (10/1997)

- Audio and speech coding @ 2 .. 64 kbps
- Analysis stage based on <u>source model (extracting parameters)</u>
- Coding based on a perception model
- speech
  - HVXC (parametric speech coding at very low bit rates ranging from 2..4 kbps)
  - CELP (NB + WB, 4 ... 24 kbps, 8 / 16 kHz sampling frequency)
- Audio Twin VQ (6 … 16 kbps / ch) / AAC (+scalable) (16 … 64+ kpbs / ch)
- System: composition of <u>audio objects</u> to <u>audio scenes</u> (mixing, effects  $\rightarrow$  structured audio)

### • Part 2: (12/1999)

- Extended functionality
- Backward compatible, includes v1
- Extension tools
  - Error robustness
  - Low delay audio coding
  - Small step scalability
  - Parametric audio coding
  - CELP / HVXC Silence Suppression
- System: environmental spatialization / File format

# **MPEG-4 Audio Profile**

### • Speech Audio Profile

- Parametric speech (HVXC)
- CELP

## • Synthesis Audio profile

- Generate speech and audio

## Scalable Audio Profile

- Includes speech audio profile
- AAC
- TwinVQ tools
- Scalable coding of speech and music

## Main audio profile

- Contains all other profiles

# **MPEG-4 Audio Tool Categories**

### Natural speech

- CELP Coder: MPEG specifies DECODER and syntax of bit stream
- HVXC Coder: acceptable quality at 2 / 4 kbps
  - ightarrow Harmonic Vector Excitation coding

## natural audio

- Based to a large extend on MPEG-2 AAC
- Coding efficiency: (PNS, LTP, TwinVQ)
- Functionality: AAC-LD, AAC-ER, MPEG-4 Lossless, scalability

## • synthetic speech

Text-to-Speech (TTS)

## • synthetic audio

- Parametric audio coding
- Structured audio

# **MPEG-4 AAC Tools**

### MPEG4-AAC == MPEG2-AAC + PNS tool + AAC Long Term Prediction profile (AAC LTP)

### **PNS: Perceptual Noise Coding**

- •Vocoder principle (reproduces the sound not the exact waveform)
- for noise signals only the power value is transmitted the decoder generates artificial noise

### **LTP: Long-Term Prediction**

- reconstructing the coded signal and calculating the difference to the original signal
- adjusting the parameters "pitch lag" and "gain" over time

### **PS: Parametric Stereo**

- generate and encode a mono signal from a stereo signal
- transmit control parameters which allow to synthesize the stereo signal (inter-channel intensity difference, inter-channel cross correlation, inter-channel phase-correlation)
- works primarily at very low bit rates

# **MPEG-4 AAC Functionality**

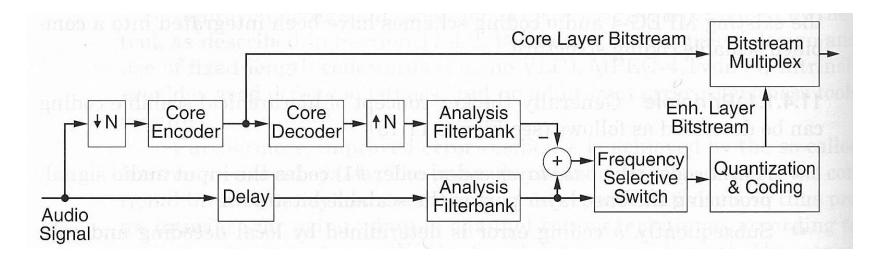
### TwinVW:

- Transform domain weighted interleave vector quantization
- Good quality at very low bit rates (~ 6 kbps)

### **MPEG-4** Low Delay

- Application: 2 way communication
- 20 msec algorithmic delay
- Approach
  - Reduced window length (512 Samples))
  - No switching of "windows"
  - No utilization of the "bit reservoirs"

### **MPEG-4 Error Robustness (Phase 2)**


- Virtually extend the code books for large coefficients
- RVLC (reversible VLC) instead of Huffman.Code

### **MPEG-4 ALS (Lossless)**

- Is based on a forward predictor
- Employs Rice codes

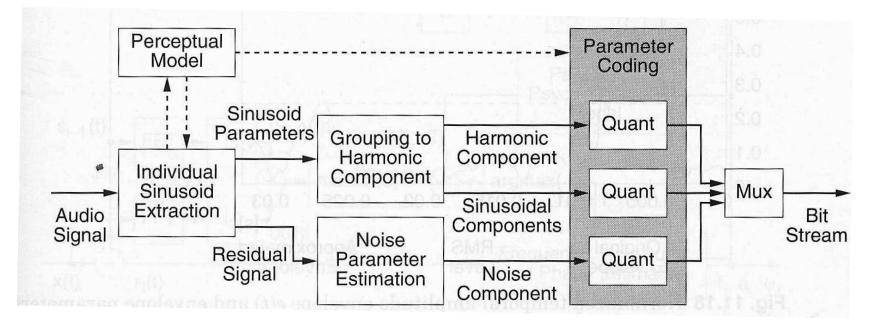
# Scalable Audio Coding

### Large step size (refinement layer with > 8 kbps)



Small step size (refinement layer with ~1 kbps)

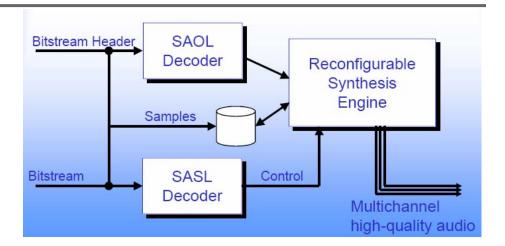
- $\rightarrow$  Fine granular Scalability
- → MPEG-4 Tools BSAC (bit sliced arithmetic Coding) → Bit plane coding replaces the processing block "Quantizer and Coding"


# **Parametric Audio Coding**

### Goal: Coding of audio at very low bit rates (4 ... 16 kbps)

### Approach: Audio "Vocoder"

### Signal model is a composition of


- Transients (highly dynamic sounds, such as percussion)
- Noise
- Harmonic sounds



# **Structured Audio**

#### **Structured Audio**

- sound specification by means of a structured description
- Decoder synthesizes the sound employing the description

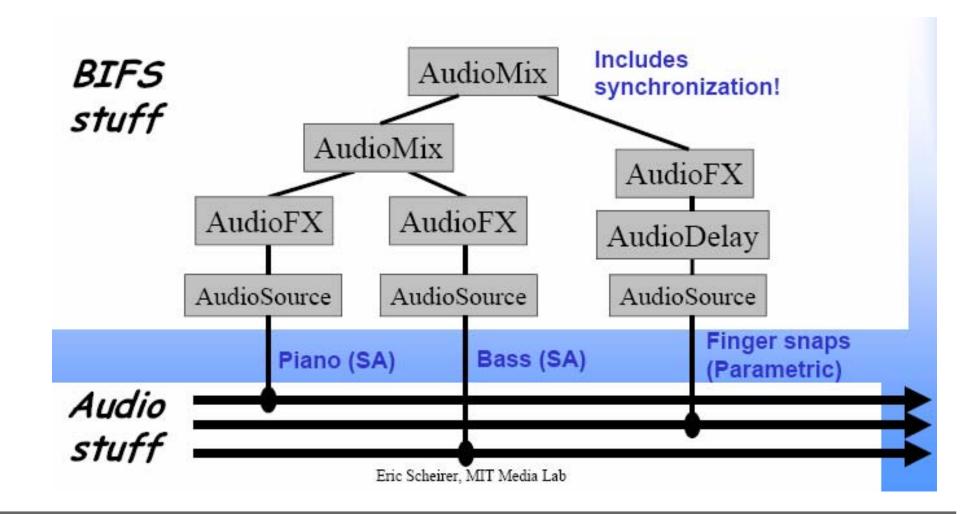


### SAOL: Sound Synthesis Language "Structured Audio Orchestra Language"

 $\rightarrow$  describing the synthesis method

#### SASBF: Structured Audio Sample Bank Format

 $\rightarrow$  describing the waveform tables

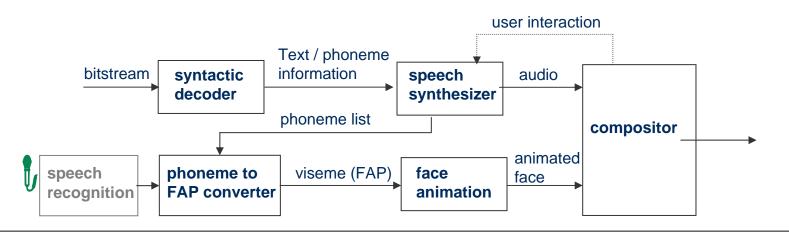

### SASL: Structured Audio Score Language

 $\rightarrow$  describing the control parameters

### **MIDI: Musical Instrument Digital Interface**

 $\rightarrow$  simplified format for describing control functionalities

## **Structured Audio Scene**




# Text – to – Speech

#### principle: transmitting of sentences

#### complemented by

- Speaker related information
- Prosody
- "Lip shape" information
- Speech code (ID)
- Emoticons (Smilie)
- Parameters controlling the face animation



# Further Improvements: HE-AAC / AACPlus v1

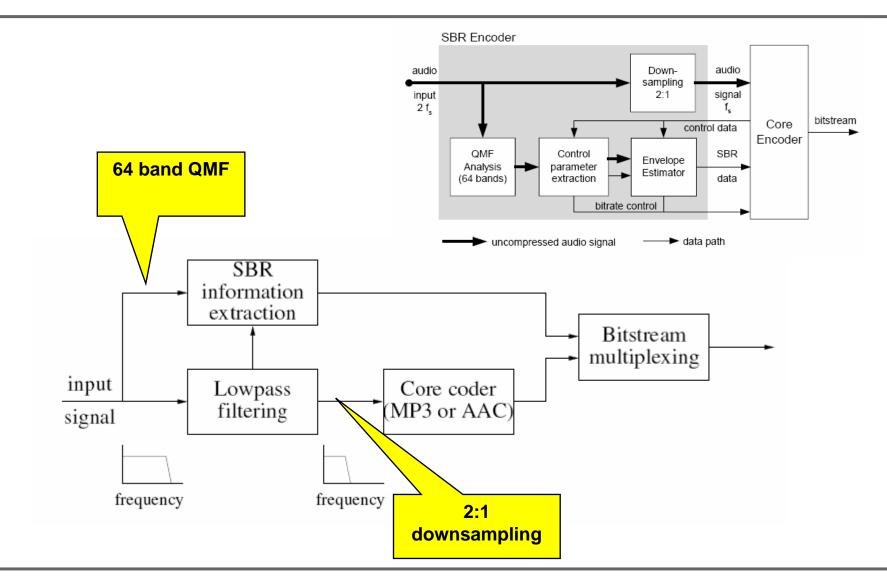
#### **Observation:**

• Significant correlation between higher and lower frequency components

#### Approach:

#### → Spectral Band Replication (SBR)

- Reconstruct higher frequency components from the coded lower frequency signal components in combination with some control information
- applicable for speech and audio codecs


#### AAC + SBC = aacPlus / MPEG-4 HE-AAC (2003) / mp3PRO (2001)

 $\rightarrow$  improves coding efficiency by about 30% compared to AAC

#### SBR side information (ca. < 10% of the entire bit rate)

- Frequencies to be reconstructed
- Spectral envelop of the higher frequencies
- Tonality of higher frequencies
- Time frequency resolution of envelop and tonalityt

# AAC-SBR



# **Quality Comparison**

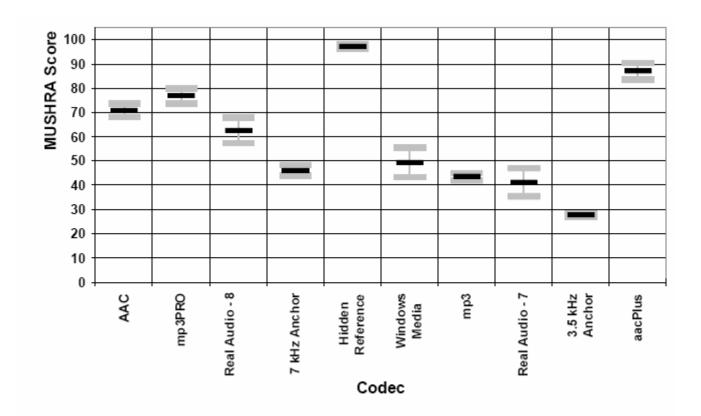
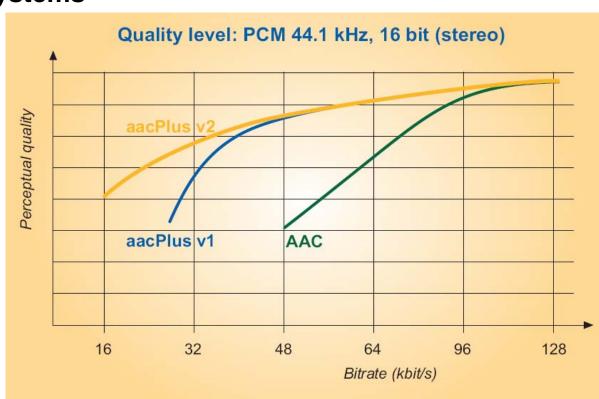




Figure 3: EBU test results for 48 kbps stereo items. Mean values and 95 % confidence intervals. IRT test site.

# HE-AAC v2 / AACPlus v2

- AACPlus v2 = AACPlus v1 + PS (parametric stereo)
- Most efficient audio codec known today
- Employed in a variety of systems
  - Digital Radio Mondeale
  - XM Satellite Radio
  - S-DMB
  - 3GPP



# What Next?

### Natural reproduction of sound fields at the location of the listener:

- Simulating acoustical fields
- Synthesizing sound fields at different locations
- Wave field synthesis
- Binaural sky<sup>™</sup> (virtual headphone)



# **Commercial Aspects of Digital Audio**

### • Enables entirely new markets

- MP3-player, "iPOD"

## Digital media distribution independent of networks

– DAB, DVB, DRM, Internet Radio, Music on Demand, "file sharing" (Napster)

## Significant impact on markets and business models

- Reason: Perfect digital copy in combination with easy and fast copy turns over markets
- Digital millenium rights act
- RIAA is sueing private persons on a large scale
- Enforcement of content and copy protection

## • Establishing new alliances

- Apple and music industry  $\rightarrow$  iTunes
- Music groups publish in the Internet
- EMI announces to relax rights enforcement for iTunes and similar platforms