

Further color spaces		
"Perception-oriented" color space – HLS (Hue – Lightness – Saturation)	ces for image editing	
– HSB (Hue – Saturation – Brightness)		
 HSV (Hue – Saturation – Value) 		
– Components		
Hue (Color): "which color"		
 Saturation: Degree of purity of the color 	(S=0: Grey value; maximum S: "pure Color")	
○ 3rd component: Brightness (grey value	at S=0)	
 CIE: contains all perceivable col CIE Lab: equidistant color space distance in the model have the s 	ors; superset of all gamuts (RC e (i.e. neighboring colors with s ame perceived difference)	δB, CMY) same
Illgner/Rauschenbach: Multimedia Coding	Part 3: Still Image Coding	3 - 10

tep	3: Q	uan	tiza	tion	(2)			
xamp	le: Q	uanti	zatio	n tab	le fro	m th	e JPE	EG Standard (Y channel)
16	11	10	16	24	40	51	61	
12	12	14	19	26	58	60	55	
14	13	16	24	40	57	69	56	
14	17	22	29	51	87	80	62	
18	22	37	56	68	109	103	77	
24	35	55	64	81	104	113	92	
49	64	78	87	103	121	120	101	
72	92	95	98	112	100	103	99	
/2	92	95	98	112	100	103	99	

Encoding of DC coefficients	DC coefficient DELTA	m
- Since DCT coefficients of neighbouring blocks are similar,	0	0
the first step is a DPCM prediction (i.e. computing the delta)	+/- 1	1
 For each delta value, a symbol m (magnitude) is 	+/- 2 3	2
generated as follows:	+/- 4 7	3
• exact value for small coefficients	+/- 8 15	4
 order of magnitude for large coefficients number of different symbols remains manageable 	+/- 16 31	5
\rightarrow in addition to m, the sign and the m-1 less significant	+/- 32 63	6
bits are transmitted without encoding	+/- 64 127	7
	+/- 128 255	8
	+/- 256 511	9
	+/- 512 1023	10
	+/- 1023 2047	11

Encoding of AC coefficients	coefficient	m
 run length encoding of a pair (n, M) 	+/- 1	1
 n: number of coefficients equal to zero (0 15) 	+/- 2 3	2
 M: value of the first non-zero coefficient at the end of the run, as follows 	+/- 4 7	3
• exact value m for small coefficients	+/- 8 15	4
 order of magnitude m for large coefficients 	+/- 16 31	5
\rightarrow number of different symbols remains manageable	+/- 32 63	6
→ in addition to m, the sign and the m-1 less significant bits are transmitted without encoding	+/- 64 127	7
 special symbols 	+/- 128 255	8
○ EOB (End of Block): if all remaining coefficients in the block are equal	+/- 256 511	9
to zero, an EOB symbol is sent after encoding the last non-zero coefficient	+/- 512 1023	10
 ZRL (Zero Run Length): encodes a sequence of 15 zeroes which are not followed by a non-zero coefficient 		

JPEG Step 6: Data Stream Format	tting (1)	
A JPEG data stream contains		
 Marker segments: signalling of control info 	rmation	
 Data segments: transmission of encoded of 	data	
 Marker segments 		
 Structure Start code 0xFF Type (1 Byte) Length → to support backwards compatib Stuffing bits if the code 0xFF occurs in entropy-coded o this byte is removed in the parser of the de Restart markers to Re-synchronize provide re-entry points for the decoder in o at restart markers, entropy decoder status 	ility (allows skipping unknown markers) data, a zero byte is appended to discriminate fr ecoder case of transmission errors and DC coefficient prediction are re-set	om marker
Illgner/Rauschenbach: Multimedia Coding	Part 3: Still Image Coding	3 - 38

 Basic idea 	
 Allow the presentation of approximati reception of the image (i.e. before all 	ons of the image in reduced quality at the receiver side during image data have been received)
- To support that, the image is encode	d in multiple passes
 Each pass is named Scan 	
Two dimensions	
 Spectral selection (selection of spect 	al bands of DCT coefficients)
- Successive approximation (selection	of bitplanes of DCT coefficients)
 Both modes can be combined for bet 	ter quality of intermediate approximations
 Applications 	
 Use of online services over slow cont 	nections
 Dynamic memory management in dig 	ital cameras
 if the memory is full, cut away the last 	st scan of images to gain space for a new picture

JPEG2000 Overview		
 ISO Standard for encoding still in Better compression than JPEG Wavelet based 	mages	
 Scalable data stream supporting data stream is divided into "Layers" which each layer leads to an improvement of th only those packets must be decoded white image 	fast transcoding ("one for all" h are described by packet headers ne image ich are needed for the targeted degree of de	') etail of the
Illgner/Rauschenbach: Multimedia Coding	Part 3: Still Image Coding	3 - 44

JPEG2000 Encoding steps

1. Preprocessing and color transformation $RGB \rightarrow YC_bC_r$ \Rightarrow to create a flexible co-ordinate grid and to separate luminance and chrominance information 2. Discrete (dyadic) wavelet transformation (DWT) \Rightarrow convert the pixel field into wavelet coefficients \Rightarrow irreversible or reversible (integer) transformation 3. Quantization of the wavelet coefficients (optional) \Rightarrow in JPEG2000 this step is optional, as the visually irrelevant information is removed in the Data stream formatting step. 4. Context modelling ⇒ create a low-entropy symbol stream by exploiting of statistical relationships in the neighborhood 5. Entropy coding $\Rightarrow~$ to represent the symbols with a minimum number of bits 6. Data stream formatting \Rightarrow create a scalable data stream Illgner/Rauschenbach: Multimedia Coding Part 3: Still Image Coding 3 - 47

 Divide the images system 	ge into one or mo	ore <i>tiles</i> ; define a reference co	ordinate
Symmetric bit a	shifting of all pix	tel values (0 $2^n \rightarrow -2^{n-1}-1$ 2^{n-1})
 Color transform 	nation		
 the data stream 2 standard mon o irreversible o reversible o reversible usually, the chi the data volum → exploit the → reduce data 	n syntax of JPEG2000 s des color transformation (YC _b color transformation (YUV) rominance components e reduced color sensitivity of a volume by factor 2 withou	supports the definition of the used color trans C _r , like JPEG) are sub-sampled in each direction by a fact f the human visual system ut perceivable compression artifacts	sformation or of 2 to reduce

JPEG2000 Step 2: Wavelet transformation A filter bank decomposes a signal into two "partial" signals: an approximation signal (low pass band) and a detail signal (high pass band) Cascading: low pass band is recursively decomposed further → octave bands Dyadic decomposition scheme: the frequency in neighboring octave bands differs by a factor of 2 Properties

- energy compaction (most energy is concentrated in the low pass band) \rightarrow irrelevance reduction in high pass bands
- perfect reconstruction of the signal by Inverse Wavelet Transformation \rightarrow lossless compression possible
- de-correlation of image data \rightarrow high compression ratio possible
- multi-resolution representation \rightarrow refinement of resolution possible
- separable transformation: 2D transformation is realized as a sequence of two 1D transformations

Illgner/Rauschenbach: Multimedia Coding

Part 3: Still Image Coding

3 - 52

JPEG2000 Naming o) f the sub	bands	
LL LH ₁ HL ₁ HH ₁	LH ₂	LHa	
HL ₂	HH_2	3	
Н	-3	ΗΗ ₃	
Illgner/Rauschenba	ch: Multimedia Co	ding Part 3: Still	- I Image Coding 3 - 58

7 wa	velet)		0	, -	, -	
Filter	n	0	±1	± 2	± 3	± 4
5/3	Lo	3/4	1/4	-1/8		
	Hi	1	-1/2			
	Lo'	1	1/2			
	Hi'	3/4	-1/4	-1/8		
9/7	Lo	0.60294902	0.26686412	-0.07822327	-0.01686412	0.02674876
	Hi	1.11508705	-0.59127176	-0.05754352	0.09127176	
	Lo'	1.11508705	0.59127176	-0.05754352	-0.09127176	
	Hi'	0.60294902	-0.26686412	-0.07822327	0.01686412	0.02674876

	LL, LH			HL		НН		Context	
ΣH	ΣV	ΣD	ΣH	ΣV	ΣD	$\Sigma H + \Sigma V$	ΣD	number	
2	-	-	-	2	-	-	≥3	8	
1	≥1	-	≥1	1	-	≥1	2	7	
1	0	≥1	0	1	≥1	0	2	6	
1	0	0	0	1	0	≥2	1	5	
0	2	-	2	0	-	1	1	4	
0	1	-	1	0	-	0	1	3	
0	0	≥2	0	0	≥2	≥2	0	2	
0	0	1	0	0	1	1	0	1	
0	0	0	0	0	0	0	0	0	

JPEG2000 Block coding: Magnitude	refinement pass (1)	
 This pass refines the precision significant by 1 bit. 	of coefficients already known a	S
It exploits correlations between coefficients and the value at the coefficient	the significance of neighboring second-highest bit plane of the	⊧ ≥ current
	Part 3: Still Image Coding	3 - 83

$\Sigma H + \Sigma V + \Sigma D$	First refinement?	Context no.
irrelevant	no	16
≥1	yes	15
0	yes	14
fficients and the s	econd-highest bitplane	of the current c

JPEG2000 Additional cleanup contexts

Two further contexts are used in the cleanup pass

Context no.	Meaning	Description	
17	RUN LENGTH	Encodes an all-zero column with 4 coefficients	
18	UNIFORM	Encodes data with assumed uniform distribution	

JPEG2000 Layer generation: Precincts

Idea

 For random access to image parts, the image can either be divided into *tiles* (already introduced) or *precincts*.

Combining code blocks to precincts

- A precinct consists of one or more code blocks which contribute to the same image area.
- A precinct is bounded to one sub band.

Precinct size

- varies from sub band to sub band
- dimensions are powers of two

Illgner/Rauschenbach: Multimedia Coding

JPEG2000 Layer generation: Packets

• One layer consists of multiple packets.

- a packet contains the codestream portion contributing to one color component, partial bitplane, sub band and precinct
- a packet may be empty.

Packet header

- the packet header signals all information needed to know the contents of the packet
 - ${\bf \bigcirc}$ codeblocks included
 - $\odot\,$ empty packet yes/no
 - O number of "all zero" most significant bit planes
 - ${\bf \bigcirc}\,$ number of coding passes per code block
 - length of coded data per code block

• Per region, zero or more partial bit planes are put into one layer

- region=code block: use codeblock inclusion info in packet header
- region=precinct: empty packets can be used to skip precincts.

Illgner/Rauschenbach: Multimedia Coding

Part 3: Still Image Coding

3 - 91

JPEG2000 JPEG2000 Part 6 – Compound Images

Situation

- different image compression methods are differently well-suited for different image classes (e.g. JPEG/JPEG2000 for photographic images, PNG for graphics, JBIG2 for bi-level images)
- $-\,$ all these classes may be combined in a single image, e.g. in color scans
- such images are called MRC (Mixed Raster Content, ISO/IEC 16485)

• Basic idea

- use the best-suited compression method for each image region
- store additional mask information to combine the parts (binary or alpha masks)

• JPEG2000 part 6 defines a file format for such content (JPM)

- basis: JP2 and JPX file formats
- support for multi-page documents
- supported compression methods for image objects: JPEG, JBIG2, JPEG2000, JPEG-LS
- supported compression methods for mask objects: Fax G.3/G.4, JBIG, JBIG2, JPEG2000

Illgner/Rauschenbach: Multimedia Coding

Part 3: Still Image Coding

3 - 100

JPEG2000 JPEG2000 Part 9 – Interactive Protocol (2)

Example session with JPIP

- 1 whole image is transmitted over a slow connection
- 2a user is especially interested in the name of the boat and defines an according region
- 2b data for this region are transmitted with precedence, leading to fast refinement
- 3 after the region of interest is fully available, data transmission for the remaining parts continues

JPEG2000 JPEG2000 Part 9 – Interactive	e Protocol (3)	
Parts of a client request		
- mandatory		
• fsiz: size of the requested image		
→ server derives the needed scaling factor from fsiz and from the image size in its database	1	
• rsiz: size of the <i>Focus Window</i> , in relation to fsiz		
• roff: offset of the Focus Window, in relation to fsiz		
- optionally in addition		
○ color components		
 number of quality layers to transmit 		
• explicit request of parts of the data stream		
Illgner/Bauschenbach: Multimedia Coding	Part 3: Still Image Coding	3 - 104

PEG2000 vs. JPEG Comparison based on so	me criteria		
	JPEG	JPEG2000	
Quality: low bit rates	bad	acceptable	
Quality: medium bit rates	good	good	
Region of interest	-	yes	
Scalability: resolution	-	yes	
Scalability: SNR resp. quality	possible	yes	
Scalability: color components	yes	yes	1
Artefacts	"Blocks"	"Smoothing"	

 Graphics Interchange Format, Co today, GIF87 is not used anymore but GI 	pmpuserve, 1987/1989 F89 has spread throughout the Web	
Image format for colormapped in	nages (max, 256 colors)	
 – (using local colormaps, also true color Gl 	Fs are possible. These are not memory-effic	ient, though.)
 Features global and local colormaps interlacing to speed up image display wh animation support (full frames as well as one color can be marked as transparent data compression using LZW 	en accessing online services over slow links image blocks) ("Magic Color")	
Illaner/Bauschenbach: Multimedia Codina	Part 3: Still Image Coding	3 - 11

 Portable Network Graphics, 1987 developed by the Internet community as pronounced "ping" 	/ 1989 an open source and patent-free alternative for GIF
• Design goals	
 avoid the LZW patent 	
 support colormapped images and true co 	lor images; plus additional transparency channel (alpha)
Features	
 encoding of colormapped images, transp 	arency by Magic Color $ ightarrow$ replacement for GIF
 encoding of true color images with difference 	ent color depth, transparency by alpha channel
 interlacing for progressive refinement in c 	online services
 animation support in the sister format MN 	IG [pronounced "ming"]
 data compression uses the patent-free de 	eflate method (I Z77 plus Huffman-Kodierung, like in gzip)

 Lossless JPEG the JPEG standard also defines a lossles Ingredients: Prediction, arithmetic coding rarely used 	ss mode which is not based on the DCT	
 JPEG-LS ISO-Standard: ISO IS 14495 for the loss! Basic Idea: Context modeling and prediction Gradient detector to select predictor and Entropy coder: Rice-coding Comparison with JPEG2000 if lossless compression is needed, JPEG 	less or near-lossless compression of true-c context G-LS is significantly faster than JPEG2000, at sin	olor images
ratio JPEG-LS is a plain compression method interactive applications	I, missing the rich feature set of JPEG2000 to su	pport mobile and

