Compact Lecture

Multimedia Coding: Methods \& Applications

Part 4: Video Coding Fundamentals

4.1: Motion Estimation and Compensation

Dr. Klaus IIIgner
Dr. Uwe Rauschenbach

What is „Video"?

Video is sequence of images $\{g\}$,
where the images have a ordered relationship in time

Key Feature:

Difference between images mainly caused by motion

What can be done for Efficient Coding?

Resolution of standard TV:

$$
\begin{array}{llll}
720 \times 576,25 \mathrm{~Hz}, 4: 2.0 & \rightarrow & 165,9 \mathrm{Mbps} & (90 \mathrm{~min} \rightarrow 112 \mathrm{~GB}) \\
\text { still image compression 10:1 } & \rightarrow & 16,6 \mathrm{Mbps} & (90 \mathrm{~min} \rightarrow 11,2 \mathrm{~GB})
\end{array}
$$

\rightarrow amount of data even for SDTV too large for transmission and storage

Approach for coding:

\rightarrow transmit only modified image areas
\rightarrow extend still image coding into temporal domain (kind of "3D")

No compensation
$\mathrm{H}=6.4 \mathrm{bit}$

Motion compensated

$$
\mathrm{H}=4.4 \mathrm{bit}
$$

Approach:

Estimate motion
(reason for changes of the image)
Problem:
How to describe "motion"?

Image Generation

Mapping 3D world \rightarrow 2D image plane:
Geometrical optics for modeling
Motion:

- Projection onto image plane is time variable
- 3D object movement \rightarrow moving of 2D regions

Mapping of Motion

Problem: motion in the image plane is not unique (no one-to-one mapping between 2D and 2D world)

B)

C)
A) change of size caused by shortening (lengthening), change of depth, rotation
B) aperture problem \rightarrow locale motion description
C) correspondence problem, in particular for periodic structures \rightarrow aliasing
\rightarrow a unique description requires to assume a certain model

Modeling Motion

- Consistency of objects:
opaque, diffuse reflecting, geometrical form
- Motion of objects:
translation, rotation, deformation
a) estimating physical parameters
\rightarrow motion analysis
model: parametric description
b) finding correspondences
\rightarrow coding
model: displacement
- Movements of the camera
zoom, pan, rotation

2D Affine Mapping

Transforming coordinates and coordinate systems

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\binom{x}{y}+\binom{x_{0}}{y_{0}}
$$

$$
\left(\begin{array}{cc}
1 & 0.5 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{cc}
1 & 0 \\
-0.5 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
\cos (\alpha) & -\sin (\alpha) \\
\sin (\alpha) & \cos (\alpha)
\end{array}\right)
$$

Parametric Motion Model (1)

3D Objektbewegung (3D affin) $\quad \mathbf{X}^{\prime}=\mathbf{A X}+\mathbf{X}_{\mathbf{0}}$
A
\rightarrow rotation, deformation
$\mathbf{X}_{\mathbf{0}} \in \mathbb{R}^{\mathbf{3}} \rightarrow$ translation
$\mathbf{X}, \mathbf{X}^{\prime} \quad \rightarrow$ coordinates in the 3D space

Mapping a point of an object assuming entral projection

$$
x^{\prime}=x \frac{Z}{Z^{\prime}}+X_{0} \frac{F}{Z^{\prime}} \quad y^{\prime}=y \frac{Z}{Z^{\prime}}+Y_{0} \frac{F}{Z^{\prime}}
$$

Resulting 2D motion of 3D moving of a rigid plane in space (3D):

$$
x^{\prime}=\frac{a_{1} x+a_{2} y+a_{3}}{a_{7} x+a_{8} y+1} \quad y^{\prime}=\frac{a_{4} x+a_{5} y+a_{6}}{a_{7} x+a_{8} y+1}
$$

Parametric Motion Model (2)

Modell	Parameter	Object form	Object motion	Projection
2D translation	2	arbitrary	2D translational	parallel
2D affine	6	planar 3D affine	8	3D affine 3D affine
2D flexible	2N	2D linear in sections	2D flexible in sections	arbitrary

Estimating the parameters:

- directly via feature points
\rightarrow requires to identify N measurement points (minimum 1 point / parameter)
- indirectly via a displacement vector field

Describing Motion as Displacement

Assumption: $g(\mathbf{x}) \mapsto O(\mathbf{X}), \quad \forall \mathbf{x} \in \mathbb{R}^{2}, \mathbf{X} \in \mathbb{R}^{3}$
Moving of $\mathrm{O}(\mathrm{X}) \rightarrow$ trace in the image sequence \rightarrow motion trajectory

$\begin{array}{ll}\text { Displacement vector } \mathrm{v}(\mathrm{x}) \text { : } & \text { describes motion in the 2D image plane } \\ \text { Motion estimation: } & \text { estimating the displacement } \mathrm{v}(\mathrm{x})\end{array}$

Displacement (Motion) Vector Field (MVF)

Vector field is discrete in space

$$
\mathbf{v}_{n}=\left\{\mathbf{v}_{n}[\mathbf{x}] \in^{2}, \mathbf{x} \in^{2}\right\}
$$

Characteristics:

- Each vector only describes translational motion
- Dynamic change of vectors
- Describing other types of motion (incl. object deformation) exploiting the change of vectors over time AND the context

Implementation:

- Describing motion discrete in space (location)
- MVF is samples in space on a sub-grid of the image grid
- MMF is termed dense, if there is a vector for each pixel
- Quantization and thresholding of the vector amplitude

Approaches for Motion Estimation

Motion Estimation (ME) $\quad \mathbf{v}_{n}=\operatorname{ME}\left(g_{n}, g_{n-1}\right)$

Assumptions:

- Unique assignment of motion to 2D plane

$$
g[x] \leftrightarrow O(X)
$$

- Intensity of pixel remains unaltered over time $\quad \Longrightarrow \quad g_{n}[\mathbf{x}]=g_{n-1}[\mathbf{x}-\mathbf{v}[\mathbf{x}]]$

Algorithms

- Matching approach
minimizing an error criteria / maximizing a similarity criterion
- Gradient approach
evaluate the continuity equation \rightarrow solving an equation system
- Statistical approach

MVF is the realization of a random process; maximizing the probability

Correspondences in Space

Assuming dense MVF

$$
\underset{\mathbf{y} \in \mathcal{N}_{\mathbf{x}}^{2}}{\forall} \mathbf{v}[\mathbf{x}] \approx \mathbf{v}[\mathbf{y}]
$$

Motion model

2D motion can approximated as
Locally translational

$$
\underset{\mathbf{y} \in \mathcal{N}_{\mathbf{x}}^{2}}{\forall} \mathbf{v}[\mathbf{x}]=\mathbf{v}[\mathbf{y}]
$$

"Matching" principle

- Partitioning the image into regions, e.g.. blocks
- Minimizing a distance criterion e() for each region

$$
e\left(\mathbf{x}_{k}, \mathbf{v}\right)=\sum_{\mathbf{x} \in \mathcal{B}_{k}} f\left(g_{n}[\mathbf{x}], g_{n-1}[\mathbf{x}-\mathbf{v}[\mathbf{x}]]\right) \rightarrow \min
$$

$f()$: function to weight each pixel error

Block Matching

$$
g_{n^{-}}
$$

$\left.g_{n}\right)$

Error criterion:

$$
e\left(\mathbf{x}_{k}, \mathbf{v}\right)=\sum_{\mathbf{x} \in \mathcal{B}_{k}}\left|g_{n}[\mathbf{x}]-g_{n-3}[\mathbf{x}-\mathbf{v}]\right|^{\alpha}, \quad \alpha \in\{1,2\}
$$

Estimation criterion:

$$
\mathbf{v}\left[\mathbf{x}_{k}\right]=\underset{\mathbf{v}_{i} \in \mathcal{V}}{\operatorname{argmin}}\left\{e\left(\mathbf{x}_{k}, \mathbf{v}_{i}\right)\right\} \quad \mathcal{V}: \text { set of test vectors }
$$

Progression of the Error Criterion (Example)

Progression of quadratic error e() over the displacement v

Search Strategies

1. full search: computational expensive, guarantees a minimal error
2. logarithmic search (assumption: convex error progrssion)
3. search in multiple steps (three step with decreasing step size)
4. fast search based on Schwarz Inequality

Logarithmic search

Multiple step search

Hierarchical Search

4. Hierarchical Search
a) approximation on image of reduced resolution
using search algorithm out of $1 \ldots .4$
b) successive refinement on images of higher resolution reduced search area \rightarrow reduced computational complexity

Identical image area per block
\rightarrow Enlarged block size

Identical block size
\rightarrow Refined description

Extensions (1)

Displacement vector amplitudes are quantized to resolution of image grid:

$$
\mathbf{v}[\mathbf{x}] \in \Lambda
$$

Increasing the amplitude resoution:

$$
k \cdot \mathbf{v}_{n}[\mathbf{x}] \in \mathbb{Z}^{2}
$$

\rightarrow motion estimation on interpolated images

$$
\mathbf{v}_{n}=\operatorname{ME}\left(\mathrm{E}\left(g_{n}\right), \mathrm{E}\left(g_{n-1}\right)\right)
$$

Interpolation operator:

$$
\mathrm{E}: \tilde{g}=\mathrm{E}(g)=[g]_{\uparrow k} * h_{E}
$$

Typical interpolation by factor 2 (half-pel) or 4 (quarter-pel)
Example:
-k = 2

- bilinear interpolation (separable filter kernel)

$$
h_{E}[x]=\frac{1}{2} \delta[x-1]+\delta[x]+\frac{1}{2} \delta[x+1]
$$

Example for Half-pel Motion Estimation

Reference signal

available signals

| interpolated signals

Shifted signal by v=3

Extensions (2)

Regular vector fields \rightarrow smoothness constraint:

Assumption: neighbored vectors describe similar motion (homogeneous motion, rigid bodies)
\rightarrow Motion estimation taking neighbored vectors into account

$$
\mathbf{v}\left[\mathbf{x}_{k}\right]=\underset{\mathbf{v}_{i} \in \mathcal{V}}{\operatorname{argmin}}\left\{\Psi\left(e\left(\mathbf{x}_{k}, \mathbf{v}_{i}\right)\right)+\lambda \sum_{\mathbf{y} \in \mathcal{N}_{\mathbf{x}_{\mathbf{k}}}}\left|\mathbf{v}_{i}-\mathbf{v}[\mathbf{y}]\right|\right\}, \quad \lambda \in \mathbb{R}
$$

$\Psi(\cdot) \quad$ Weight function

Extensions (3)

Increasing the spatial resolution of MVF:

- using smaller blocks
estimation is less reliable due to aperture effects and noise \rightarrow hierarchical block matching
- interpolating motion vector fields
interpolation requires adaptation according to motion model and consideration of motion discontinuities at boudaries

4×4 independent

16×16

4×4 hierarchical

Other Matching Approaches (1)

Correlation as measure for similarities of functions:

$$
\begin{aligned}
\varphi_{g_{n} g_{n-1}}(\mathbf{v})= & \left(g_{n} * g_{n-1}^{\prime}\right)(\mathbf{v}) \\
= & c \cdot \sum_{\mathbf{x}} g_{n}[\mathbf{x}] \cdot g_{n-1}[\mathbf{x}-\mathbf{v}] \\
g^{\prime}[x]=g[-x] \quad & \text { normalization: } c^{-1}=\sum_{\mathbf{x}} g_{n}[\mathbf{x}] \cdot \sum_{\mathbf{x}} g_{n-1}[\mathbf{x}]
\end{aligned}
$$

Criterion for motion estimation
\rightarrow Maximizing the cross correlation function

$$
\mathbf{v}=\underset{\mathbf{v}_{i} \in \mathcal{V}}{\operatorname{argmax}}\left\{\varphi_{g_{n} g_{n-1}}\left(\mathbf{v}_{i}\right)\right\}
$$

- high computational effort
- robust against illumination changes
\rightarrow reduced constraints for motion model

Other Matching Approaches (2)

Correspondences in the frequency domain

$$
\begin{aligned}
g[\mathbf{x}] & \circ \bullet G\left(\mathbf{f}_{\mathbf{x}}\right) \\
g[\mathbf{x}-\mathbf{v}] & \circ \bullet G\left(\mathbf{f}_{\mathbf{x}}\right) \cdot \exp \left(-j 2 \pi\left\langle\mathbf{v}, \mathbf{f}_{\mathbf{x}}\right\rangle\right)
\end{aligned}
$$

Interpretation: motion results in characteristic shifts of the phase

Characteristics:

- high computational complexity
- phase signal typically have significant high frequency components
\rightarrow Estimation by matching unreliable
- displacements present in the entire image can be identified
- motion can not be assigned to local regions

Region Oriented Motion Estimation (1)

Partitioning into regions:

- Homogeneity of features (texture, motion)
- Correspondence of objects (a priori knowledge)
\rightarrow Estimating of the region form required
- Describing the contour
- Approximating as set of elementary regions such as blocks or triangles

Ill-posed problem: motions versus regions form

Region Oriented Motion Estimation(2)

Approaches for solving the problem:

- Alternating estimation
- Estimate motion based on existing region partitions (segmentation)
- Update the segmentation constraint to the feature motion
- Simplified version
- Estimate motion using elementary regions
- Create segementation by Split and/or Merge
- Criterion for motion estimation includes a region model
- Smoothness constraint:

O motion and texture within regions homogeneous
O contours of regions are smooth

- Discontinuities of features (in particular motion) at region boundaries
\rightarrow very high computational complexity

Examples 1:

Vector field, calculated by
Block matching and regularization

Segmentation derived from the displacement vector field

Example 2:

Estimate „motion" of nodes of a triangular mesh

Estimate jointly the
Segmentation and motion Based on a statistical approach

Motion Compensation

Goal: Coding the difference between images
\rightarrow compensation of motion
\rightarrow predict an image based on estimated motion

$$
\begin{aligned}
& \quad \hat{g}_{n}[\mathbf{x}]=\mathrm{MC}\left(g_{n-1}, \mathbf{v}_{n}\right)=g_{n-1}[\mathbf{x}-\mathbf{v}[\mathbf{x}]], \quad \mathbf{x}^{\in} \Lambda \\
& \operatorname{mit} \quad g_{n}-\hat{g}_{n} \mid 2 \rightarrow \min
\end{aligned}
$$

Error free prediction in reality not possible:

- images are sampled on a grid
- motion model is just an assumption
- VVF sampled and quantised
- border effects
- uncovered background
verdecktwerdend

Extensions (1)

Amplitute resolution higher than image grid of image to be compensated

- e.g. block matching with half-pel resolution
- Affine motion parameters
\rightarrow subpel compensation required:

Reduction operator R:

8×8
Pixel-grid accurate resolution

$$
\hat{g}_{n}=\operatorname{RD}\left(\operatorname{MC}\left(\operatorname{EX}\left(g_{n}-1\right), \mathbf{v}_{n}\right)\right)
$$

$$
\mathrm{RD}: g=\mathrm{RD}(\tilde{g})=\left[g^{*} h_{R}\right]_{\downarrow_{k}}
$$

8x8 Half-pel accurate resolution

Extensions (2)

Blocking artifacts due to discontinuities at block boundaries

- post-processing filter
- In-loop filter (Deblocking-filter \rightarrow H.264)
- Prediction with overlapping blocks (OBMC)

$$
\hat{g}_{n}[\mathbf{x}]=\sum_{\mathbf{v}_{i} \in \mathcal{N}_{\mathbf{x}}^{2}} w(i) g_{n-1}\left[\mathbf{x}-\mathbf{v}_{i}\right]
$$

$w: 2 \mathrm{D}$ weighting function with $\sum_{x, y} w[x, y]=1$

Optimization problem:

- displacement vectors depends on weight window
- weight window depends on displacements vector
\rightarrow iterative approach

