Compact Lecture

Multimedia Coding: Methods & Applications

Part 4: Video Coding Basics

4.3 Model Based Video Coding

Dr. Klaus Illgner

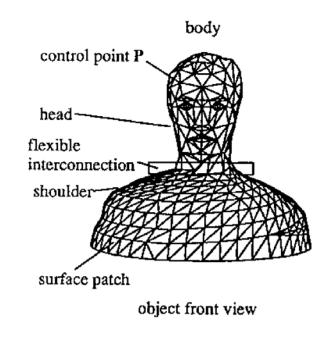
Dr. Uwe Rauschenbach

Illgner/Rauschenbach: Multimedia Coding

Part 4.3: Model Based Video Coding 4.3 - 1

Model Based Coding

Aim:


Modeling the original 3D scene and determining the model parameters from the 2D image data (compare Vocoder for speech coding)

- → scene description image reconstruction by animation
- → advantage of very low data rate only applicable for specific scenes

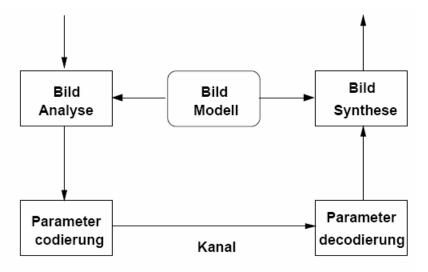
Parameter estimation

e.g. via analysis by synthesis (compare CELP)

Model	Surface	Volume
parametric	splines	Generalized cylinder
Non-parametric	Wire model	splines

Model based Coding (2)

Coding


• Explicit object models \rightarrow semantic coding approach

e.g. animated, talking heads

• Implicit models \rightarrow object based coding approach

modeling the scene only to an extend, which allows to describe the 2D scene

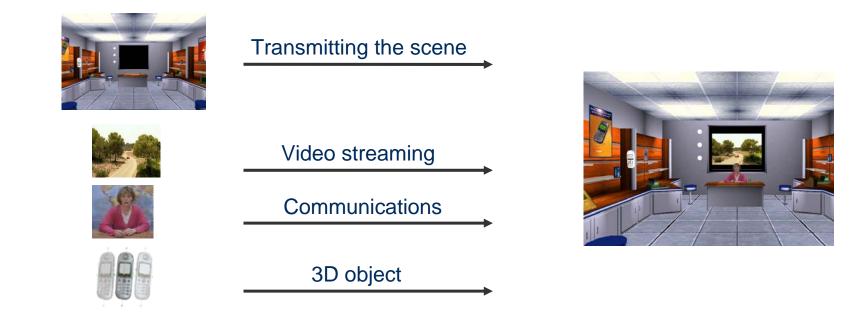
 \rightarrow e.g. analysis to synthesis coding

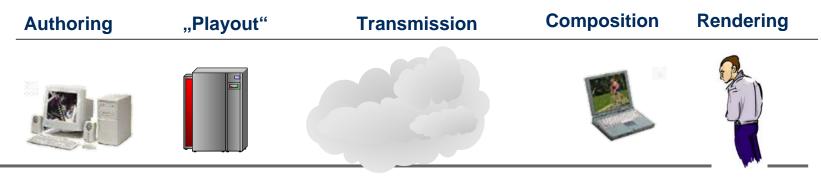
Example of a MPEG-4 Scene

Elements of a Scene

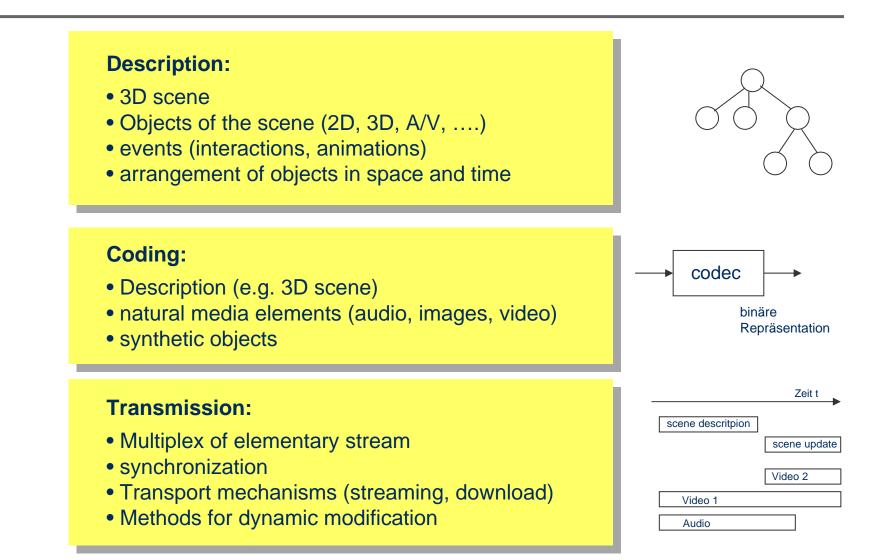
- virtual 3D room
- virtual objects
- manipulable 3D objects
- A/V object
- arbitrarily shaped A/V objects
- hyperlinks

Functionality within a scene


- Navigating in a room
- Interacting with 3D objects
- retrieve and control videos
- live-streaming of arbitrarily shaped 2D video objects
- retrieving hyperlinks


Another Example: IST Project SoNG (2002/2003)

Communicating a MPEG-4 Scene

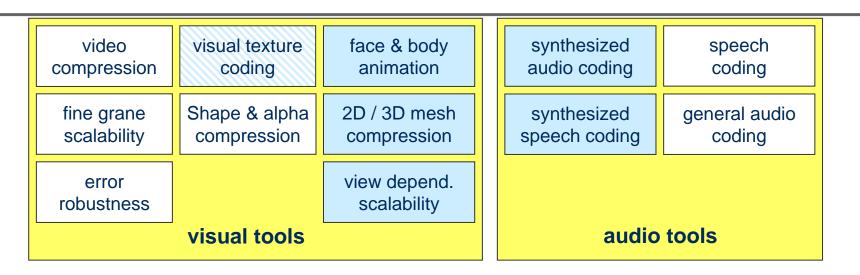


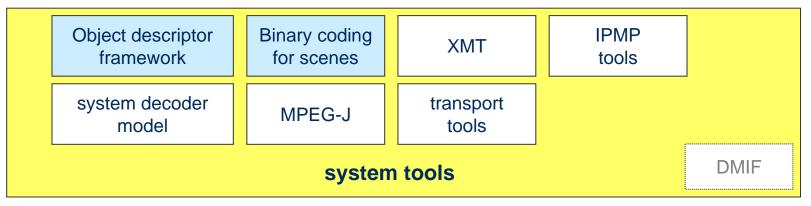
Illgner/Rauschenbach: Multimedia Coding

Part 4.3: Model Based Video Coding 4.3 - 6

Aspects for a Technical Implementation

The Standard ISO/IEC MPEG-4


Idea:


- scene is a composition of various A/V objects
 - e.g. text, images, video, 2D/3D artifical or natural objects
- individual coding approaches for different object types
- opportunity to interact with the objects of the scene
- suitable mechanisms for the various transport and delivery requirements, according to the target applidation

SNHC – Synthetic and Natural Hybrid Coding

- describing synthetic and natural A/V objects
- temporal and spatial composition of the A/V objects
- coding the description
- coding the specific media components beyond audio and video (text-to-speech, animation parameter, graphical elements,)
- defining specific visual and auditory profiles

Elements of MPEG-4 Standards

SNHC components and respectively contain relevant elements

Scene Description: BIFS – Binary Format for Scenes

• Extending VRML

• Embedding audio-visual object with extended parameters

- A/V Objects are leaves of a scene graph, e.g. 2D Graphics, Sound2D, AudioSource, ...
- Complementing visual tools / nodes, e.g. FBA, 2D/3D Mesh
- Extended functionality, e.g. mixing audio sources, synthesis of audio

• Combination of 2D and 3D Scenes

e.g. Layer2D, Layer3D, CompositeTexture2D nodes

• Concepts for interactivity

- Extend via Script and ConditionalNode
- Animation "continuous interpolation"

• Streaming and download of scenes

- Commands for synchronized scene updating → modifying of node parameters at a specific point of time (replace nodes, routes, ...)
- AnimationStream nodes, for continuously stream scene animations

• Binary representation (coding) of the description

Layer2D media stream Layer3D Scene description group (root) 3D coordinate system Layer3D Layer3D Layer3D compositor projection layer hypothetical observer

Example for a MPEG-4 Scene Description

Illgner/Rauschenbach: Multimedia Coding

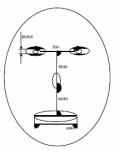
Part 4.3: Model Based Video Coding 4.3 - 11

Example: Object Descriptor

DMB reanimates BIFS

- DMB (Digital Multimedia Broadcast) used for mobileTV services
- Utilizes MPEG-4 BIFS for interactive applications
- Based on Core2D Profile and XML description

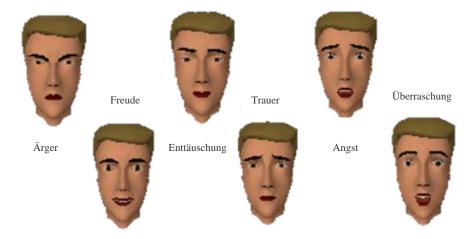

SNHC Tools "Face and Body Animation": Face Animation


Description:

- 84 feature points describe the face anatomy (face in neutral position)
- 68 face animation parameters FAP; moving feature points for reaching a specific expression; expressions divided in 10 categories
- FAP units allow "by normalization" to model the intensity of an animation independent of the face model (6 relations of "feature points" to each other)

Face and head model

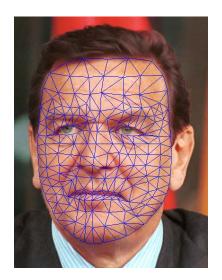
- Describing the face and head, e.g. as a wireframe model
- Mapping the feature points onto the face model
- Mapping the face texture
- Animation tables (animation rules) several nodes (points) of the face are animated jointly for each FAP

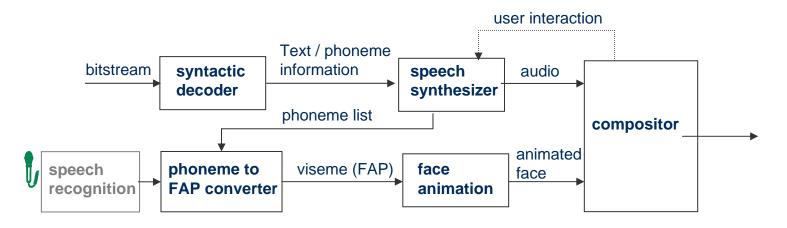


Extended Animation Options of the Face

Approach: Animation is a composition of elementary FAPs

Expressing emotions 6 fundamental expressions


14 viseme: visual analogon to phonemes


Text	Graphem	Phonem/Visem
Α	Α	a: / 10 (A:)
V	\mathbf{V}	v / 2 (f,v)
a	a	a: / 10 (A:)
t	t	t: / 4 (d , t)
a	a	a: / 10 (A:)
r	r	r / 9 (r)

Synthesized Speech -- TTS

Principle:

- Transmitting a sentence
- complemented with
 - Speaker related information
 - Prosody
 - "Lip shape" information
 - Speech code (ID)
 - Emoticons (Smilie)
 - The control parameters for animating the face

Summary

MPEG-4 SNHC

- defines an approach for a consistent representation and the temporal and spatial composition of synthetic objects and natural A/V objects in 2D and 3D scenes
- defines an efficient coding for the description
- defines coding approaches for media formats beyond audio and video (text-to-speech, animation parameter, graphical elements)
- provides functionality to stream and dynamically update scene description
- defines specific visual and auditive profiles

Applications

Virtual video conferences -- Avatars, e.g. for user interfaces (GUI) -distant learning – e-Learing – e-commerce portals – simulations – interactive multi-user environments (games) -- --